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ABSTRACT This paper develops a time as well as order 
update recursion for linear least-squares lattice (LSL) 
interpolation filters. The LSL interpolation filter has the 
nice stage-to-stage modularity which allows its length to 
be increased or decreased "two-sidedly" (i.e., both pust and 
future) without affecting the already computed parameters. 
The LSL interpolation filter is also efficient in 
computation, flexible in implementation and fast in 
convergence. The computer simulation results shown in 
this paper reveal that although interpolation needs more 
computing power than prediction does, however, 
interpolation can generate much smaller error power and, 
thus, reduces much more temporal redundancy than 
prediction does. 

1. INTRODUCTION 

Linear prediction has many applications in signal 
processing such as differential pulse code inodulation for 
bandwidth compression, speech processing, adaptive 
filtering, etc. The performance of these aforementioned 
applications may be substantially improved by using the 
less widely known linear interpolation. Linear 
interpolation is "noncausul" in the sense that the current 
signal sample can be estimated from a linear combination 
of its past andfuture neighboring samples. The noncausal 
interpolation filters can be made causal and physically 
realizable by appending a suitable delay. Some well known 
theoretical properties and results in linear interpolation 
based upon minimum mean square error (MMSE) 
estimation were discussed in [1]-[6]. When data are 
stationary and statistics are known, the MMSE estimation 
is a very commonly used criterion. In practice, however, 
one often has only a finite number of data samples to work 
with and no knowledge of the data statistics is available. 
under the circumstances, the MMSE estimation can no 
longer be used. The least-squares (LS) estimation can be 
used to get around this difticulty. 

It is widely known that lattice structures have several 
advantages over their transversal counterparts [9, pp.981. It 
was also shown in [1][2][5] that for most processes the 
minimum mean square interpolation error is smaller than 

that of prediction due to the higher correlations between the 
nearest neighboring samples in the interpolation case. 
Furthermore, linear interpolation is often better suited to 
two-dimensional image processing than the linear 
prediction [ 71. These nice features make interpolation 
lattice realization a good choice for applications such as 
data compression. This paper develops computationally 
efficient and fastly convergent recursive LSL filters for 
linear interpolation. 

2. LSL INTERPOLRTION FILTERS 

Let (X( i )} ,  i = 1,2, ..., n, be a real discrete-time input signal 
to a transversal asymmetric interpolation filter of order 
(p,f), where n is the variable length of the input signal 
samples. The interpolation filter is usymmetric in the 
sense that the number of past and future signal samples 
which is p and f respectively linearly weighted to estimate 
the current signal sample x(n-fl is not necessarily identical 
[51. Note that x(n) is the most recent signal sample used. 
Let the interpolation coefficient vector at time n be 

that will be optimized in the least-squares sense over the 
observation interval 1-f I i I n-f as follows: Let the (q+l)- 
by-1 input vector be given as 

(2) 
where q is the sum of p and f. The (p,f)th order 
interpolation error at each time unit is 

Note that the interpolation coefficients of the interpolation 
coefficient vector in (1) remain fixed during the observation 
interval 1-f 2 i 5 n-f. Also note that the use of 
prewindowing is assumed, that is, x(i) = 0 for i I O .  The 
optimum interpolation coefficients defined in (1) can be 
determined by minimizing the sum of the (p,f)th order 

interpolation error squares, i=l  1 .f (eL'di))2, with respect to 
the interpolation coefficients b(p,-)f(n-f),..., b(,,f), 1 (n-f), 
b(,,f),.l (n-D ,..., b(p,-),.p(n-f). This operation will yield the 
following deterministic form of the augmented normal 

bTp,fin-Mb(p,n.pn-O, . . . h p . o , ~ ( n - f X  1 ,b,,,.., cn- ~...., b,p.o.-p("a] (1) 

x i + l ( i )  =[x( i ) ,x( i - l )  ,..., x ( i - ~ ) ]  , 1-f I i s n-f , 

4,f(i) = b,,fin-n x q + l ( i + Q  , I - f I  i I n-f . T 
(3) 

n-f 
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equation for the linear asymmetric interpolation 
R q + l ( n )  bp,hn-O = Ip,hn-f) , (4) 

where 1;:hn-n = [OT Ip,f("-f) 09 
matrix Rq+l(") is the (q+l)-by-(q+l) deterministic 
correlation matrix and can be expressed as 

T 
Rq+l(") = Aq+l[,,)(") Aq+l(=)(n), (5) 

... x(n-1) 
x(n-2) x c )  1 X Q  I 

xo  I 
0 

I 
0 

x(nq)] (6) 
and Ip,f(n-f) is the minimum value of the sum of the 
(p,f)th order interpolation error square with x(n) being the 
most recent signal sample used. Vectors of and o p  are 
column vectors of f and p zeros respectively. When f and p 
are set to zero respectively in (4), the deterministic form of 
the augmented normal equation for the linear asymmetric 
interpolation will reduce to the following widely known 
deterministic form of the augmented normal equations for 
forward and backward predictions: 

T T  Rq+l(n) %(n) = [ P&)30q] 

Rq+I(n) Cq(n) = [ Of,$(n)]T , 

(7) 

(8) 

a$) =[ 1,aq,l(n),aq,2(n) , . . . ,~ ,q(n) ]  (94 
(9b) 

and 

where 

md 
are qth order forward and backward prediction coefficients 
respectively, Pqb) and Pq(n) are the minimum value of the 
sum of the q h  order forward and backward prediction-error 
squares respectively. Note that efficient order-update 
recursions used to develop the well known LS prediction 
lattice called the LSL algorithm was first developed in 
[ 111. We are now prepared to develop the recursive LS 
asymmetric interpolation lattice filters by embedding the 
solution of LS interpolation lattice in the solution of LS 
prediction lattice. We begin the derivation by realizing that 
the (p,f+l)st order augmented deterministic interpolation 
normal equation can be similarly deduced to be 

ci(n) = [ cq,¶(n 1,. . ..cq,2(n).cq, 1 (n), 11 

F B 

Rq+2(n) bp,f+l(n-f-l) = [Of+l,Ip,f+icn-f-1),Opl T T T  (10) 
T 

wherebp.f+l(n-f-l) = 

and the (q+2)-by-(q+2) deterministic correlation matrix 
Eb(p.r+i ).f+ I (n-f-1 ), . . . . b(p. f+ I 1, I ( n -f-1). 1 .b[p.r+ I 1,. I (11 4-1 1,. . . , b(p,f+l ),-p(n-f-l )I 

(1 1) 
T 

Rq+2(") = Aq+2(,,,(") ACj+2(,,,("). 
T 

Matrix Aq+q,)(n) in (1 1) is defined as 

and the scalar, Ip,f+l(n-f-l), in (10) is the minimum value 
of the sum of the (p,f+l)st order interpolation-error squares 
with x(n) being the most recent signal sample used. To 

obtain an order-update recursion between bP.f+l(n-f-l) and 

bP76n-f), we invert the deterministic correlation matrix 

Rq+2(n) in (10) 

By defining PL,f+l(n) as 

and using the formula [8, pp.5771 

Ri+z(n) = 

we can recursively obtain the newly updated optimum 

interpolation coefficient vector bp,f+l(n-f-l) from vector 

bp,hn-f) by using 

F 
Ip,f+l(n-f-l) = Pp,f+l(n) Ip,f(n-f-l), (14) 

+ aq+l(n)a;+p) 
P;+ 1 (n)  

9 

The ratio $,f+l(n) can be found from the (f+2)nd row of 
(15) to be 

F 1 

1+ 
Pp,f+l(") = 

Ip,dn-f-l) ai+l,f+l(n) 

We will now obtain a lattice structure for the (p,f+l)St 
order LS asymmetric interpolation by premultiplying both 
sides of (15) by row vector [X(n),X(n-l)  ,.,.,X(n-q-l)]. This 
vields 

P;+l(") (16) 

The error e'p.f+l(n-f-l) represents the interpolation error 
when one estimates the current signal sample, x(n-f-l), 
from its p past and (f+l) future neighboring samples by 
minimizing the sum of the (p,f+l)st order interpolation 
error squares with the most recent signal sample used up to 
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x(n). The error eIp,fin-f-l) represents the interpolation error 
when one estimates the current signal sample, x(n-f-1), 
from its p past and f future neighboring samples by 
minimizing the sum of the (p,D* order interpolation error 
squares with the most recent signal sample used up to x(n- 
1). Note that there is one delay involved in forming the 
new order-update interpolation error which will make the 
LSL interpolation filter physically realizable as one 
additional future signal sample is used. The (p+l,f)h order 
augmented deterministic interpolation normal equation can 
be similarly deduced to be 

where 
b;f+ 1 $n-f)Sb(pi .n.flii-O ..... b (p+i.o.l(n-n,l ,b (p+ i .~ . - i (n -n  ,.... b ( p 1 . ~ . - p 1 ( n - 0 ]  

and Ip+l,f(n-f) is the minimum value of the sum of thc 
(p+l ,f)th order interpolation-error squares with x(n) being 
the most recent signal sample used. If we define Pp+l , f (n)  

B 

as 

Ip+l.f(n-f) = PUp+l,f(n)Ip,f(n-f), (19) 
then the following order-update recursion for interpolation 
error when one additional past signal sample is used to 
estimate the current signal sample can be similarly 
obtained: 

where 
PDp+l.*l") = 1 

Ip,f(n-f) c'q+l,p+l(n) 
1. 

P,B+l(n) . (21) 
The error $+I ,fin-f) represents the interpolation error when 
one estimates the current signal sample, x(n-f), from its 
(p+l)  past and f future neighboring samples by 
minimizing the sum of the (p+ 1,f)th order interpolation 
error squares with the most recent signal sample used up to 
x(n). Note that there is no delay involved in forming the 
new order-update interpolation error as one additional past 
signal sample is used. Equations (14), (16), (17), (19), 
(20), and (21) make up the LS asymmetric interpolation 
lattice solution. The LSL algorithm which is used as the 
preprocessing operation of this solution can be seen in [8, 
pp.6191. A single stage LSL realization of (p,f+l)st order 
and (p+l,t]h order interpolation error filter using (17) and 
(20) is shown in Figure 1. There are q!/p!f! different lattice 
implementations for a (p,tYh order LS interpolation error 
filter due to an orthogonal basis set discovered in [lo][ 121, 
where q=p+f. All the implementations generated by this 
orthogonal basis set will give the same result. 

3. S l M U L R T l O N  RESULTS 

In this section we describe a computer simulation 
experiment which compares the performances of 
interpolation lattice and prediction lattice. For the purpose 
of comparison, we use a second order autoregressive 
process, AR(2), which is defined as x(n) + alx(n-1) + a2x(n- 
2) = &(n), where the driving process, &(n), is a computer 
generated sequence which simulates a zero-mean Gaussian 
white noise process with variance 0;. The AR parameters 
a1 and a2 are chosen so that the AR process x(n) has unity 
variance. For convenience, the AR parameter values 
closely follow those in [8, pp.2861. Figures 2 and 3 show 
the results of computer simulations of learning curves by 
using both LSL forward prediction filters and LSL 
interpolation filters with the eigenvalue spread of the 
AR(2), being set to 10 and 100 respectively. The 

symbols <(e~,2(11-2))22, <(e5(n))2>, and are 
used to denote the 400 ensemble-averaged squared errors for 
the (2,2)th - order interpolation, 2nd - order, and 4th - order 
forward predictions respectively. The results of simulations 
used a loglo scale. Figures 2 and 3 show that interpolation 
indeed provides smaller average squared errors (by about 7 
dB for this particular AR(2) process) than prediction does. 
This simply displays that the LSL interpolation, which 
makes better use of correlation between the nearest 
neighboring samples than prediction does, can achieve 
better performance than that of LSL prediction. The 
computer simulation results also reveal that the learning 
curves of the LSL interpolation filters display very fast 
convergence. 

4. CONCLUSIONS 

The development of the LSL interpolation filters in this 
paper utilizes an orrhogonal basis consisting of both 
forward and backward prediction errors first discovered in 
[10][12]. As a result, the LSL interpolation filter has the 
nice decoupling (or order-recursive) property which allows 
the most effective and efficient expansion and contraction 
of its length. Furthermore, The LSL interpolation filter is 
efficient in computation and flexible in implementation. 

The simulation results reveal that although interpolation 
needs more computing power than prediction does, 
however, interpolation generates much smaller error power 
and thus reduces much more temporal redundancy than 
prediction does. As a result, a higher degree of data 
compression can be achieved by interpolation than by 
prediction. 
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as time-recursive interpolation error rilter realization 
of orders (p,f+l) and (p+l,f). - 
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Figure 2. Learning curves (loglo scale) of the LSL 
interpolation filter and LSL forward prediction filters with 
the eigenvalue spread of the AR(2) being set to 10. 

0 [ 101 J. T. Yuan, "Lattice Structures fcr Noncausal Filters," 

Engineering, University of Missouri-Rolla, Rolla, 
MO., 1991. p -2 

Ladder Forms for Fast Parameter Tracking," Proc. t -3 

2 -1  
Ph.D. dissertation, Department of Electrical 

e 
la 

[11]M. Morf, and D. T. Lee, "Recursive Least Squares 
E 

1978 IEEE Conf. Decision and Control, SanDiego, 0 50 100 150 200 250 300 350 
Calif., pp. 1362- 1367. 

[12]J. T. Yuan, and J. A. Stuller, "Order-Recursive FIR 
Smoothers," to be Published in IEEE ~ r a n s .  on 
Signal Processing, Vol. 47, No. 5 ,  May 1994. 

time nerations (n) 

Figure 3. Learning curves (log 10 scale) of the LSL 
interpolation filter and LSL forward prediction filters with 
the eigenvalue spread of the AR(2) being set to 100. 
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