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Correspondence

A State-Space Approach to QRD-LSL Interpolation and Il. SQUARE-ROOT INFORMATION FILTERS FOR THEUNFORCED
QRD-LSL Smoothing DYNAMICAL MODEL

Sayed and Kailath [1], [4] described the special unforced dynamical
model that plays a crucial role in formulating a general framework for
deriving the RLS family of adaptive filtering algorithms:

Jeng-Tay Yuan

Abstract—Sayed and Kailath demonstrated the feasibility of directly de-
riving many known adaptive filtering algorithms in square-root forms by
a proper reformulation of the original adaptive problem into a state-space
form. This work employs this state-space form to develop adaptive inter- "
polation and smoothing algorithms. In particular, a systematic and concise y(n) =u" (n)z(n) + v(n) (2)
derivation of the QR-decomposition least-squares lattice (QRD-LSL) interpo-
lation and smoothingalgorithms using correspondences between Kalman \here
filtering and LSL adaptive filtering is given.

z(n +1) =2"""2z(n) 1)

Index Terms—interpolation, Kalman filtering, order-recursive adaptive A positive real scalar;
filters, smoothing, state-space models. z(n) M x 1 state vector;

u(n) M x 1input vector;

v(n) zero-mean white noise process with unit variance;

y(n) scalar observation.

The square-root information filterg¢hat propagate the square root

The Kalman filter [2] provides the linear minimum mean-squared ek—uz(n) rather thank (n) itself can be characterized by [1], [4, pp.
timator of the state vectar(k) , given the observation vectors (or datagg 4]

vectors)y(1l) throughy(k). However, many applications require the
use of the best estimator of the state veetgr) at some timg, where

Jj < k. This is commonly known as tremoothingproblem [3]. Sim- ‘
ilarly, linear interpolationis the mathematical process of estimating & (n|y7nfl)K7H/Z(7’ -1 y'(n) O(n)

. INTRODUCTION

)\I/QK*H/Z(/L -1 AV 2u(n)

an unknown data sample based on a weighted sum of the surroundjng o? 1

data samples. Naturally, smoothing filters and interpolation filters out- _H/2

perform their filtering and prediction counterparts, respectively, owing K (n) 0

to the fact that the former two filters consider the additional “subspace  — | 3/ (n +1|Y, )K—H/:’(n) rr—l/Q(n,)a*(n) (3)

of future data” [4]-[6].

Sayed and Kailath [1] demonstrated that the Kalman filter provides
a general framework for the derivation of several different variants of
the recursive least-squares (RLS) algorithm including RLS, LSL, a
QRD-LSL [4], [7]- However, their approach is concerned only with
causal fi_Iters. Smoothing filt_ers and inte_rpol_ation filters are both “norg-,. _ 1) = E{[z(n S (= 1[Veo)]
causal” in the sense that a linear combination of the present, past, an
future observations can be used to estimate the present signal sample.
Consequently, a suitable delay must be introduced for physical realiz- X [g(n — 1) — & (n — 1| Yn_l)]’f}
ability. This work comments on the order-recursive QRD-LSL inter-
polation and QRD-LSL smoothing algorithms developed in [5] and
[6], respectively, and shows that both algorithms can be develop&dhe filtered state-error correlation matrix in whigbn — 1Y, 1) is
by the general framework provided by the Kalman filter theory bifie minimum mean-square estimate of the state vagtor- 1), given
in a more systematical and more concise manner relative to the e datay(1), y(2),....y(n — 1); a(n) is the innovation associated
sults in [5] and [6]. This development can be accomplished by cowith y(n) and is defined as
structing one-to-one correspondences between Kalman variables and
LSL variables, followed by presenting the QRD-LSL interpolation and a(n) = y(n) — uH(n):i:(n [V, _1) (4)
QRD-LSL smoothing algorithms in a square-root form by translating
the square-root information filtering algorithm into the correspondingg,— (4, is the conversion factor that converts the Kalman filter in-
prearray-to-postarray transformation. novationa(n) to the Kalman filter estimation error defined by

M2 () K2 () =12 (n)

ere

e(n) = y(n) —u" (n)&(n|Y,) (5)
Manuscript received February 21, 2001; revised August 15, 2001. This work
was supported by the National Science Council, Taiwan, R.O.C., under Cotetably, the matrix©(») in (3) is an orthogonal rotation that pro-
tract, NSC 89-2213-E-030-010. The associate editor coordinating the reviewgfces a block zero entry in the top block row of the postarray. The
this paper and approving it for publication was Prof. José Carlos M. Bermud . . . . .
The author is with the Department of Electronic Engineering, Fu Jen Catho‘?@low_mg section demonstrates that the square-root mformatl_on f_||ters
University, Taipei, Taiwan, R.O.C. (e-mail: yuan@ee.fju.edu.tw). described above also provide a general framework for the derivation of

Publisher Item Identifier S 1053-587X(01)09598-8. both QRD-LSL interpolation and QRD-LSL smoothing algorithms.

1053-587X/01$10.00 © 2001 IEEE



IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 49, NO. 11, NOVEMBER 2001 2881

TABLE |
SUMMARY OF ONE-TO-ONE CORRESPONDENCESBETWEEN KALMAN VARIABLES AND LSL VARIABLES IN STAGE (p, f + 1)
AND STAGE (p + 1, f) OF THE QRD-LSL INTERPOLATION FILTER

LSL Variable

Kalman Interpolation Interpolation

Vit (.S) = (P f +1) (P.) = (p+1.1)
Intermediate Forward Intervolator Intermediate Int )
Predictor P Backward Predictor nterpolator
y(n) At :H(n n-f-1) ﬂ.'”/zgl‘f(n—f—l) Ae :+1(n n-f) /'L'”’ze":f(n—f)
. .

u (n) gpf(n_f_l) q+|(”n"f_1) 3pf(n_f) g:+](nn_f)
*(n| Y, ) AT (n 1) A (n = 1) AT (n = 1) ATk (= 1)
K(n-1) A7 (n - f-2) A'F i(n=1,n— f-2) AU (n~ f-1) )."Bq”:l(n—l,n—f—l)

o () i =0E" i) | R @-DAREL - f ) |y wA ) | 2 - f)

r{n) Yps(n=1) Yo (n—1) Yor (1) Yo (1)

7;,/(”_1) Yoynln—=1) 7;;,/(") ¥ pery (1)

lll. STATE-SPACE APPROACH TO THEQRD-LSL
INTERPOLATION ALGORITHM

of the QRD-LSL interpolation algorithm in an array form using (3)
to (5) and the correspondences between the Kalman variables and
LSL variables listed in Table I. Notably, the following development
of the array form for adaptive intermediate forward (backward)
predictor as well as those for adaptive interpolator and adaptive
smoother (see Table V) follows [4, pp. 655-665 ] in a similar
manner. Table 1l describes all the LSL variables whose order is
indicated in the subscript. The one-to-one correspondences between
the Kalman variables and the LSL variables shown in the second
©6) column of Table | are obtained as follows. The underlying state-space
representation for they(+ 1)th-order least-squares lattice interme-
diate forward prediction is given by(n + 1) = A"'2xz(n) and
y(n) = el y(n — f — Da(n) + v(n) using (1) and (2) and the
relation shown in (9) of [5], where(n) is the state-variable, and the
observationy(n) is defined byy(n) = A\™"/2ct | fe(n,n — f = 1)
(see [4, pp. 585, 657, 658]). Accordingly, the first four lines of corre-
spondences between the Kalman and LSL variables for intermediate
forward prediction listed in Table | can be obtained. The remaining
Z bip, py.6(n = Flyli + k) two lines of correspondences can be verified as follows by using (4)
Mod? and (5). With the aid of the first four lines of correspondences just
1—f<i<n-f. (7) obtained, the Kalman filter innovatian(») in (4) is defined by

In a (p, f)th-order linear interpolation, we linearly estimate the
present input data sampjéi) from itsp past andf future neighboring
data samples, viz.,

Ip, s (i) = Pyli+k)

1—-f<i<n-—f

whereb, ) «(n — f) is the interpolation coefficient at time — f,
which remains fixed during the observation interivad f < i < n—f.
The length of the signal is variable. The ordey = p + f. Using (6),
the (p, f)th-ordera posterioriinterpolation error at each time unit can
be written as

ep, (D) = y(i) = Gp.r (1) =y(i

Herein, anyth-order interpolation filter operating on the present datao,,(,n) =~ /;( n— 1A n/2

sample as well ag past andf future data samples to produce the - Iy

(p, f)th-order interpolation error at its output is referred to as g}Jth- [Wq+1(” n—f-1)=1gan=1) (n—f- 1)]
ordermt_erpc_;lgtlon filter (or mte_rpolator), wher_eq =p —|— f is as- :ﬁ’/;{fz(n 1A~ 77/27];+1(n) ®)
sumed implicitly. Order-recursive QRD-LSL interpolation filters re-
quiring onlyO(¢) operations have been developed in [5] by employin
a modified version of linear forward and backward predictions, whi
are referred to as thatermediate forward and backward predictions

%{here the conversion factqﬁ/ (n — 1) can be expressed as

Herein, we formulate the QRD-LSL interpolation algorithm developed 1/ (7 1= p j(" - f -1)
in [5] within the framework provided by the Kalman filter theory. The p f(n —f-1
following two cases are considered since order-updated recursion for L (n— f -1)
the interpolation error can be obtained by increasing eitherp by z",fi
one Spyf(n, —-f=-1

_€qF+1(n,n —-f=-1
TR Y
65+1(7l,7l —f-1

== 9)

ehii(nn — f=1)

A. Additional Future Data Sample Is Usefl:i— f + 1

1) Array for Adaptive Intermediate Forward PredictofThis
work attempts to present the intermediate forward prediction part
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TABLE I
DESCRIPTION OFLSL VARIABLES

77;+1(n) s nf+,(n) : A priori forward, backward prediction errors

e qF a(n), e f .1 (n) : Aposteriori forward, backward prediction errors

£ f an), ¢ qB +1 (n) : Angle-normalized forward, backward prediction errors

eqF amn—=f-=1), afH(n, n — f): Angle-normalized intermediate forward, backward prediction errors

e:+1 (n,n~f-1), ef L1{(n,n = f): A posteriori intermediate forward, backward prediction errors

& 11,)/ (n=f), &,,(n- /) : Angle-normalized interpolation, smoothing errors

é,’,,f(n -, e;,j-(n — f): A priori, posteriori interpolation errors

&, (=1, e, (n—f): Apriori, posteriori smoothing errors

F . (n), Bg(n):Sum of weighted angle-normalized forward, backward prediction error squares

Foa(nn—f-1), B,,,(n-1,n~ f -1):Sum of weighted angle-normalized intermediate forward,
backward prediction error squares

1, ;(n= f—1):Sum of weighted angle-normalized interpolation error squares

TABLE 1lI
SUMMARY OF ONE-TO-ONE CORRESPONDENCEBETWEEN KALMAN VARIABLES AND LSL VARIABLES OF THE QRD-LSL SVOOTHING FILTER
LSL Variable
Kalman
Variable Smoothing Smoothing
(2, /)= (p+1)) (B, /Y= (p,f+])
y(n) A e (n=f) A el (n-f=1)
w'(n) €1 (n) £ (n)
-’2(”| Y,) j'_nlzkf»rl(n_l) A_n/quFn(n -1)
K(n-1) AT'B N (n - 1) ATVF N (e - 1)
a(n) Vot A (n=f) Vot (A=DA"2E, ((n=f=1)
Y .r (1) Vpsn=h)
r(n) RN 7 I
7p+1,f(n) }/p,f+](n_ )

With the aid of the same correspondences, the Kalman filter estimatfiiered estimation erroe(n) is given by [4, pp. 660]

error in (5) is defined by

e(n) :7’]:}/2(71 —1)A7"/?

P~ (n) = e(n)

“a(n)

o = Def )

V2 — Dnkyi(n)

X [65_:1(11,, n—f—1)— 15+l(lt)eff('lt —f - l)] T, f
!
1y —n/ - _rYp,f(n - 1) _ 2
=y, (= DA el (). (10) = o) ¢lq(n—1) (11)

The conversion factor~' (n) that converts the innovation(n) to the

wherey, ;(n — 1) = e/ 1(n)/ni}1(n) [4, pp. 655]
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TABLE IV
SUMMARY OF THE QRD-LSL INTERPOLATION AND QRD-LSL SVOOTHING ALGORITHMS

(1) As one additional future data sample is used, f — f+1

A. Adaptive Intermediate Forward Predictor

AL & (- f-1) L1 -1 0
AN (n=1) gl (- f-1) @] (n-1)= AL (n) () (12)
0 Vo =1) e (- f-DLY - f=1) Yo (=D

B. Adaptive Interpolator

",1"2ﬁ;lif(n:Ln—f =2 & (nn—f-D) F;ﬁ(n,*n— -1 0
j}/zp::/ﬂ(n -1 5,1;, f(” -f-D f,q+1(n) = . P,I:, f+1(”) g,[,, fl-;; (n—-f-1 (16)
0 Vor =D dnn=f-DELmn-f-1)  7npalr=1)

(2) As one additional past data sample is used, p—>p+1

A. Adaptive Intermediate Backward Predictor

AP =1 =1 &l (n-f) L= 0
AP (=1 &l (nn—f)|OF (n)= AL (n) e2,1(n) a7
0 Vpyn) - & =LY n—f) Vel ™

B. Adaptive Interpolator

A"ZB;if(n:I,n—f—l) &2 (nn—f) B;if(p,n—f) 0
A 2P5+1,f (n-1 ‘9,1;,/(” -N ®;),q+l(n) = p§+l,/(n) 5{;4,1,/(” - (18)
0 Vs (m) Enn= DB (=) Vs

(3) Adaptive Smoother

A. As one additional past observation is used, p— p+1

AUBUI(-) g2 () Byt (n) 0
Aplatn=1) &, (=)0, =] plan) & pur s (1= f) 19
0 75t () X MBI YR o)

B. As one additional future observation is used, f —> f+1

AEL (= D) ef, () Fyli (m) 0
Aplin-1) &, ,(n=f-1|0, ()= Pyei(n) Eppm(n=f -1 (20)
/2 * _ /2
0 Yo (n=1) T O NS NATCERY

Using (3) and (9) and referring to the second column of Table I, tvehere Agjl(n)élgjl(nﬂ;{f(n — f = 1) is the intermediate

array for the adaptive intermediate forward predictor of orderl is  forward prediction auxiliary parameter, and the X2 2 matrix
) —1) —sr4,n-=-1)].

presented as of (n—1) = ci,q(n ) s5T,.q(n—1) is an orthogonal

' st n—=1) crqy(n—1)

rotation designed to annihilate the prearray emj)g-(n —f-1

NP2~ f—2) 2l - f—1) that is already computed from the previous interpolation lattice stage.
p,f P, f :
/\1/2&;1(” -1) 55+1 (n,n—f—1) (—)?_’q(n -1) Owing to this annihilation, the angle-normalized forward prediction
0 ﬂll/f’ (n—1) errorsqFJr1 (n), which is directly accessible from a QRD-LSL predictor

that can be embedded into a QRD-LSL interpolation filter [5], appears
12 in the postarray of (12). The angle-normalized intermediate forward
Li(n—f-1) 0 prediction errorsX’,, (n,n — f — 1) can thus be computed using
= Aﬁl (n) =f () (12) (12) and will be used later to compute the order-updated interpolation

e}{*f(,n - f- 1)1—;}/2(" —f=1 ~y}’)ff2(fn, -1 error [see (16)]. Notably, this angle-normalized intermediate forward
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MNP n—1n—f-2) ebp(nn—f-1)

/\1/2p£}+1(n -1) Sé,fl(z -f- 1) (")},qul(n)
0 a2 n = 1)
Ffinn—f—=1) 0
= /’5,}'+1(”) 5;,f+1(n -f=-1 (16)

eqp_:l(n,n —f- l)Fq_ng/Q(n,n —f-1 ’7';,/j?+1(”/ —-1)

prediction error, along with other delayed intermediate forward argl Additional Past Data Sample Is Usgd— p + 1

bac!<ward prediction errors of lower o_rders, for_m e_lrthogonal The array for the intermediate backward predictor and the array

basisso that arorder-recursiveQRD-LSL interpolation filter can be ¢, e interpolator can be similarly derived from the fourth and fifth

realized. ) . columns of Table I, respectively. The results are shown as (17) and
2) Array for Adaptive Interpolator: We now seek to present the |n-(18) in Table IV.

terpolation part of the QRD-LSL interpolation algorithm in an array The QRD-LSL smoothing algorithin array form can be developed

form with the aid of the third column of Table I. The first four lines;, o anner similar to that described above by using the correspon-

of co_rresponde_nces between the_ Kalman and LSL variables for int§, e petween the Kalman variables and LSL variables shown in the
polation listed in Table I follow directly from the state space charag,qnd and third columns of Table Il (see also [8, (21) and (26)]). Sum-

terization of the %, f)th-order interpolgtion that may be described b¥nary of this algorithm is presented as (19) and (20) in Table IV.
e(n+1) = X""2z(n) andy(n) = ek, (n,n = f = D)z(n) 4+ v(n)

[using (1) and (2) and the relation shown in [5, Eq. (7)]], whete) =

)\_"/2:‘;}(71 — f — 1). The remaining two lines of correspondences
pertaining to interpolation can be obtained from (4), (5), and (9) in a This work has demonstrated that the link between Kalman filter
manner similar to that described in the intermediate forward predictitireory and adaptive filter theory, as originally developed by Sayed

IV. CONCLUSIONS

part. The Kalman filter innovation(n) in (4) is thus defined by and Kailath [1], can be further extended to adaptive interpolation
and smoothing. Accordingly, the already established results in
a(n) :v,;/f?(n — A2 Ieast-squares lattice adaptive interpolation_ and smoothing can be
e connected with the general framework provided by the Kalman filter
X [&u.f(" -f-1 theory.
—klj n—l/lp* n,n — —1]
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Using (3) and (9) and referring to the third column of
Table I, the array for the adaptive interpolator as the interpo-
lation order is presented as in (16), shown at the top of the
page, Wherepf,ij,_,_l('n)éki}ﬁ_l('n)F;J/j(n,n - f = 1) is
the interpolatioq au>gi|i;ary p/aram(et)er, and the 2 2 matrix
o' — | Cfatt\) TSp a4l
O.fﬂH‘] (71) - 5;,q+1 (71) C/f,q-l—l(n’)
designed to annihilate the prearray entfy, (n,n — f —1) computed
from (12). Owing to the orthogonal rotation, the order-updated recur-
sion for the interpolation errar, ., (n — f — 1) can be computed as
an additional future data sample is considered.

is an orthogonal rotation



