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A State-Space Approach to QRD-LSL Interpolation and
QRD-LSL Smoothing

Jenq-Tay Yuan

Abstract—Sayed and Kailath demonstrated the feasibility of directly de-
riving many known adaptive filtering algorithms in square-root forms by
a proper reformulation of the original adaptive problem into a state-space
form. This work employs this state-space form to develop adaptive inter-
polation and smoothing algorithms. In particular, a systematic and concise
derivation of the QR-decomposition least-squares lattice (QRD-LSL) interpo-
lation and smoothingalgorithms using correspondences between Kalman
filtering and LSL adaptive filtering is given.

Index Terms—Interpolation, Kalman filtering, order-recursive adaptive
filters, smoothing, state-space models.

I. INTRODUCTION

The Kalman filter [2] provides the linear minimum mean-squared es-
timator of the state vectorxxx(k) , given the observation vectors (or data
vectors)yyy(1) throughyyy(k). However, many applications require the
use of the best estimator of the state vectorxxx(j) at some timej, where
j < k. This is commonly known as thesmoothingproblem [3]. Sim-
ilarly, linear interpolation is the mathematical process of estimating
an unknown data sample based on a weighted sum of the surrounding
data samples. Naturally, smoothing filters and interpolation filters out-
perform their filtering and prediction counterparts, respectively, owing
to the fact that the former two filters consider the additional “subspace
of future data” [4]–[6].

Sayed and Kailath [1] demonstrated that the Kalman filter provides
a general framework for the derivation of several different variants of
the recursive least-squares (RLS) algorithm including RLS, LSL, and
QRD-LSL [4], [7]. However, their approach is concerned only with
causal filters. Smoothing filters and interpolation filters are both “non-
causal” in the sense that a linear combination of the present, past, and
futureobservations can be used to estimate the present signal sample.
Consequently, a suitable delay must be introduced for physical realiz-
ability. This work comments on the order-recursive QRD-LSL inter-
polation and QRD-LSL smoothing algorithms developed in [5] and
[6], respectively, and shows that both algorithms can be developed
by the general framework provided by the Kalman filter theory but
in a more systematical and more concise manner relative to the re-
sults in [5] and [6]. This development can be accomplished by con-
structing one-to-one correspondences between Kalman variables and
LSL variables, followed by presenting the QRD-LSL interpolation and
QRD-LSL smoothing algorithms in a square-root form by translating
the square-root information filtering algorithm into the corresponding
prearray-to-postarray transformation.
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II. SQUARE-ROOT INFORMATION FILTERS FOR THEUNFORCED

DYNAMICAL MODEL

Sayed and Kailath [1], [4] described the special unforced dynamical
model that plays a crucial role in formulating a general framework for
deriving the RLS family of adaptive filtering algorithms:

xxx(n+ 1) =��1=2xxx(n) (1)

y(n) =uuuH(n)xxx(n) + v(n) (2)

where

� positive real scalar;

xxx(n) M � 1 state vector;
uuu(n) M � 1 input vector;
v(n) zero-mean white noise process with unit variance;
y(n) scalar observation.

The square-root information filtersthat propagate the square root
KKK�1=2(n) rather thanKKK(n) itself can be characterized by [1], [4, pp.
594]

�1=2KKK�H=2(n� 1) �1=2uuu(n)

x̂̂x̂xH njYn�1 KKK�H=2(n� 1) y�(n)

0
T 1

�(n)

=

KKK�H=2(n) 0

x̂̂x̂xH n+ 1 jYn KKK�H=2(n) r�1=2(n)��(n)

�1=2uuuH(n)KKK1=2(n) r�1=2(n)

(3)

where

KKK(n� 1) = E [xxx(n� 1)� x̂xx (n� 1 jYn�1)]

� [xxx(n� 1)� x̂xx (n� 1jYn�1)]
T

is the filtered state-error correlation matrix in whichx̂xx(n�1 jYn�1) is
the minimum mean-square estimate of the state vectorxxx(n�1), given
the datay(1); y(2); . . . ; y(n � 1); �(n) is the innovation associated
with y(n) and is defined as

�(n) = y(n)� uuu
H(n)x̂xx(n jYn�1) (4)

andr�1(n) is the conversion factor that converts the Kalman filter in-
novation�(n) to the Kalman filter estimation error defined by

e(n) = y(n)� uuu
H(n)x̂xx(n jYn ) (5)

Notably, the matrix�(n) in (3) is an orthogonal rotation that pro-
duces a block zero entry in the top block row of the postarray. The
following section demonstrates that the square-root information filters
described above also provide a general framework for the derivation of
both QRD-LSL interpolation and QRD-LSL smoothing algorithms.
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TABLE I
SUMMARY OF ONE-TO-ONE CORRESPONDENCESBETWEEN KALMAN VARIABLES AND LSL VARIABLES IN STAGE (p; f + 1)

AND STAGE (p + 1; f ) OF THE QRD-LSL INTERPOLATION FILTER

III. STATE-SPACE APPROACH TO THEQRD-LSL
INTERPOLATION ALGORITHM

In a (p; f )th-order linear interpolation, we linearly estimate the
present input data sampley(i) from itsp past andf future neighboring
data samples, viz.,

ŷp;f(i) = �

f

b
�

(p;f);k(n� f)y(i+ k)

1� f � i � n� f (6)

whereb(p;f);k(n � f) is the interpolation coefficient at timen � f ,
which remains fixed during the observation interval1�f � i � n�f .
The length of the signaln is variable. The orderq = p+ f . Using (6),
the (p; f )th-ordera posterioriinterpolation error at each time unit can
be written as

e
I
p;f(i) = y(i)� ŷp;f(i) =y(i) +

f

b
�

(p;f);k(n� f)y(i+ k)

1� f �i � n� f: (7)

Herein, anyqth-order interpolation filter operating on the present data
sample as well asp past andf future data samples to produce the
(p; f )th-order interpolation error at its output is referred to as a (p; f )th-
order interpolation filter (or interpolator), whereq = p + f is as-
sumed implicitly. Order-recursive QRD-LSL interpolation filters re-
quiring onlyO(q) operations have been developed in [5] by employing
a modified version of linear forward and backward predictions, which
are referred to as theintermediate forward and backward predictions.
Herein, we formulate the QRD-LSL interpolation algorithm developed
in [5] within the framework provided by the Kalman filter theory. The
following two cases are considered since order-updated recursion for
the interpolation error can be obtained by increasing eitherf or p by
one.

A. Additional Future Data Sample Is Used:f ! f + 1

1) Array for Adaptive Intermediate Forward Predictor:This
work attempts to present the intermediate forward prediction part

of the QRD-LSL interpolation algorithm in an array form using (3)
to (5) and the correspondences between the Kalman variables and
LSL variables listed in Table I. Notably, the following development
of the array form for adaptive intermediate forward (backward)
predictor as well as those for adaptive interpolator and adaptive
smoother (see Table IV) follows [4, pp. 655–665 ] in a similar
manner. Table II describes all the LSL variables whose order is
indicated in the subscript. The one-to-one correspondences between
the Kalman variables and the LSL variables shown in the second
column of Table I are obtained as follows. The underlying state-space
representation for the (q + 1)th-order least-squares lattice interme-
diate forward prediction is given byx(n + 1) = ��1=2x(n) and
y(n) = "Ip;f(n � f � 1)x(n) + v(n) using (1) and (2) and the
relation shown in (9) of [5], wherex(n) is the state-variable, and the
observationy(n) is defined byy(n) = ��n=2"Fq+1fx(n; n � f � 1)
(see [4, pp. 585, 657, 658]). Accordingly, the first four lines of corre-
spondences between the Kalman and LSL variables for intermediate
forward prediction listed in Table I can be obtained. The remaining
two lines of correspondences can be verified as follows by using (4)
and (5). With the aid of the first four lines of correspondences just
obtained, the Kalman filter innovation�(n) in (4) is defined by

�(n) =

1=2
p;f (n� 1)��n=2

� �
F
q+1(n; n� f � 1)� 1Fq+1(n� 1)�Ip;f(n� f � 1)

=

1=2
p;f (n� 1)��n=2�Fq+1(n) (8)

where the conversion factor
1=2p;f (n� 1) can be expressed as



1=2
p;f (n� 1) =

"Ip;f(n� f � 1)

�Ip;f(n� f � 1)

=
eIp;f(n� f � 1)

"Ip;f(n� f � 1)

=
"Fq+1(n; n� f � 1)

�Fq+1(n; n� f � 1)

=
eFq+1(n; n� f � 1)

"Fq+1(n; n� f � 1)
(9)
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TABLE II
DESCRIPTION OFLSL VARIABLES

TABLE III
SUMMARY OF ONE-TO-ONE CORRESPONDENCESBETWEENKALMAN VARIABLES AND LSL VARIABLES OF THE QRD-LSL SMOOTHING FILTER

With the aid of the same correspondences, the Kalman filter estimation
error in (5) is defined by

e(n) =

�1=2
p;f (n� 1)��n=2

� eFq+1(n; n� f � 1)� 1Fq+1(n)e
I
p;f(n� f � 1)

=

�1=2
p;f (n� 1)��n=2eFq+1(n): (10)

The conversion factorr�1(n) that converts the innovation�(n) to the

filtered estimation errore(n) is given by [4, pp. 660]

r�1(n) =
e(n)

�(n)

=


�1=2
p;f (n� 1)eFq+1(n)



1=2
p;f (n� 1)�Fq+1(n)

=

0p;f(n� 1)


p;f (n� 1)
= c2I;q(n� 1) (11)

where
0p;f(n � 1) = eFq+1(n)=�
F
q+1(n) [4, pp. 655]
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TABLE IV
SUMMARY OF THE QRD-LSL INTERPOLATION AND QRD-LSL SMOOTHING ALGORITHMS

Using (3) and (9) and referring to the second column of Table I, the
array for the adaptive intermediate forward predictor of orderq + 1 is
presented as

�1=2I
1=2
p;f (n� f � 2)

�1=2�F
q+1(n� 1)

0

"Ip;f(n� f � 1)

"Fq+1(n; n� f � 1)



1=2
p;f (n� 1)

�F
I;q(n� 1)

=

I
1=2
p;f (n� f � 1)

�F
q+1(n)

eIp;f(n� f � 1)I
�1=2
p;f (n� f � 1)

0

"Fq+1(n)



01=2
p;f (n� 1)

(12)

where �F
q+1(n)�1

F
q+1(n)I

1=2
p;f (n � f � 1) is the intermediate

forward prediction auxiliary parameter, and the 2� 2 matrix

�F
I;q(n � 1) =

cI;q(n� 1)

s�I;q(n� 1)

�sI;q(n� 1)

cI;q(n� 1)
is an orthogonal

rotation designed to annihilate the prearray entry"Ip;f(n � f � 1)
that is already computed from the previous interpolation lattice stage.
Owing to this annihilation, the angle-normalized forward prediction
error"Fq+1(n), which is directly accessible from a QRD-LSL predictor
that can be embedded into a QRD-LSL interpolation filter [5], appears
in the postarray of (12). The angle-normalized intermediate forward
prediction error"Fq+1(n; n � f � 1) can thus be computed using
(12) and will be used later to compute the order-updated interpolation
error [see (16)]. Notably, this angle-normalized intermediate forward
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�1=2F
1=2
q+1(n� 1; n� f � 2)

�1=2�Fp;f+1(n� 1)

0

"Fq+1(n; n� f � 1)

"Ip;f(n� f � 1)



1=2
p;f (n� 1)

�0

f;q+1(n)

=

F
1=2
q+1(n; n� f � 1)

�Fp;f+1(n)

eFq+1(n; n� f � 1)F
�1=2
q+1 (n; n� f � 1)

0

"Ip;f+1(n� f � 1)



1=2
p;f+1(n� 1)

(16)

prediction error, along with other delayed intermediate forward and
backward prediction errors of lower orders, form anorthogonal
basisso that anorder-recursiveQRD-LSL interpolation filter can be
realized.

2) Array for Adaptive Interpolator:We now seek to present the in-
terpolation part of the QRD-LSL interpolation algorithm in an array
form with the aid of the third column of Table I. The first four lines
of correspondences between the Kalman and LSL variables for inter-
polation listed in Table I follow directly from the state space charac-
terization of the (p; f )th-order interpolation that may be described by
x(n+ 1) = ��1=2x(n) andy(n) = "Fq+1(n; n� f � 1)x(n)+ v(n)
[using (1) and (2) and the relation shown in [5, Eq. (7)]], wherey(n) =
��n=2"Ip;f(n � f � 1). The remaining two lines of correspondences
pertaining to interpolation can be obtained from (4), (5), and (9) in a
manner similar to that described in the intermediate forward prediction
part. The Kalman filter innovation�(n) in (4) is thus defined by

�(n) =

1=2
p;f (n� 1)��n=2

� �
I
p;f(n� f � 1)

�k
F
p;f+1(n� 1)�Fq+1(n; n� f � 1)

=

1=2
p;f (n� 1)��n=2

�
I
p;f+1(n� f � 1): (13)

The Kalman filter estimation errore(n) in (5) is defined by

e(n) =

�1=2
p;f (n� 1)��n=2

� e
I
p;f(n� f � 1)� k

F
p;f+1(n)e

F
q+1(n; n� f � 1)

=

�1=2
p;f (n� 1)��n=2

e
I
p;f+1(n� f � 1): (14)

The conversion factorr�1(n) is given by

r
�1(n) =

e(n)

�(n)

=


�1=2
p;f (n� 1)eIp;f+1(n� f � 1)



1=2
p;f (n� 1)�Ip;f+1(n� f � 1)

=

p;f+1(n� 1)


p;f (n� 1)
= c

0

f;q+1(n)
2
: (15)

Using (3) and (9) and referring to the third column of
Table I, the array for the adaptive interpolator as the interpo-
lation order is presented as in (16), shown at the top of the
page, where�Fp;f+1(n)�kFp;f+1(n)F

1=2
q+1(n; n � f � 1) is

the interpolation auxiliary parameter, and the 2� 2 matrix

�0

f;q+1(n) =
c0f;q+1(n) �s0f;q+1(n)

sf;q+1(n) c0f;q+1(n)
is an orthogonal rotation

designed to annihilate the prearray entry"Fq+1(n; n�f�1) computed
from (12). Owing to the orthogonal rotation, the order-updated recur-
sion for the interpolation error"Ip;f+1(n� f � 1) can be computed as
an additional future data sample is considered.

B. Additional Past Data Sample Is Used:p ! p+ 1

The array for the intermediate backward predictor and the array
for the interpolator can be similarly derived from the fourth and fifth
columns of Table I, respectively. The results are shown as (17) and
(18) in Table IV.

TheQRD-LSL smoothing algorithmin array form can be developed
in a manner similar to that described above by using the correspon-
dences between the Kalman variables and LSL variables shown in the
second and third columns of Table III (see also [8, (21) and (26)]). Sum-
mary of this algorithm is presented as (19) and (20) in Table IV.

IV. CONCLUSIONS

This work has demonstrated that the link between Kalman filter
theory and adaptive filter theory, as originally developed by Sayed
and Kailath [1], can be further extended to adaptive interpolation
and smoothing. Accordingly, the already established results in
least-squares lattice adaptive interpolation and smoothing can be
connected with the general framework provided by the Kalman filter
theory.
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