

Objectives

Review RF basics

Understand fundamentals on S-parameter measurements

Examine architectures and calibrations of VNAs

Network Analysis is NOT....

Anticipate ____Accelerate ____Achieve

🔅 Agilent Technologies

May 30, 2013

What Are Vector Network Analyzers?

Are stimulus-response test systems

Characterize forward and reverse reflection and transmission responses (S-parameters) of RF and microwave components

Quantify linear magnitude and phase

Are very fast for swept measurements

Provide the highest level of measurement accuracy

Magnitude Magnitude

What Types of Devices are Tested?

Integration	Diplexers Filters Couplers Bridges Splitters, dividers Combiners Isolators Circulators Attenuators Adapters Opens, shorts, loads Delay lines Cables Transmission lines Resonators	Antennas Switches Multiplexers Mixers Samplers	MMICs T/R modules Transceivers Receivers Tuners Converters VCAs Amplifiers VTFs Modulators VCAtten's
Low	Dielectrics R, L, C's	Multipliers Diodes	Transistors

Anticipate ____Accelerate ____Achieve

Agilent Technologies

May 30, 2013

Device Test Measurement Model

Lightwave Analogy to RF Energy

Why Do We Need to Test Components?

Verify specifications of "building blocks" for more complex RF systems

Ensure distortionless transmission of communications signals

- Linear: constant amplitude, linear phase / constant group delay
- Nonlinear: harmonics, intermodulation, compression, X-parameters

Ensure good match when absorbing power (e.g., an antenna)

The Need for Both Magnitude and Phase

Agenda

- What measurements do we make?
- Network analyzer hardware
- Error models and calibration
- Advanced S-parameter measurements

 \sim

Transmission Line Basics

Low frequencies

- Wavelengths >> wire length
- Current (I) travels down wires easily for efficient power transmission

+

• Measured voltage and current not dependent on position along wire

High frequencies

- Wavelength \approx or << length of transmission medium
- Need transmission lines for efficient power transmission
- Matching to characteristic impedance (Z_o) is very important for low reflection and maximum power transfer
- Measured envelope voltage dependent on position along line

Anticipate ____Accelerate ____Achieve

Agilent Technologies

May 30, 2013

Transmission line Z_o

- Z_o determines relationship between voltage and current waves
- Z_{o} is a function of physical dimensions and ε_{r}
- Z_{\circ} is usually a real impedance (e.g. 50 or 75 ohms)

Power Transfer Efficiency

For complex impedances, maximum power transfer occurs when $Z_L = Z_S^*$ (conjugate match)

Maximum power is transferred when $R_L = R_S$

Transmission Line Terminated with Short, Open

For reflection, a transmission line terminated in a short or open reflects all power back to source

High-Frequency Device Characterization

Anticipate ____Accelerate ____Achieve

🔅 Agilent Technologies

May 30, 2013

Reflection Parameters

Reflection
Coefficient
$$\Gamma = \frac{V_{\text{reflected}}}{V_{\text{incident}}} = \rho \angle \Phi = \frac{Z_{\text{L}} - Z_{\text{o}}}{Z_{\text{L}} + Z_{\text{o}}}$$

Return loss = -20 log(ρ), $\rho = |\Gamma|$

Smith Chart Review

Anticipate ____Accelerate ____Achieve

Agilent Technologies

May 30, 2013

Transmission Parameters

$$V_{\text{Incident}} = V_{\text{Transmitted}}$$
Transmission Coefficient = T = $\frac{V_{\text{Transmitted}}}{V_{\text{Incident}}} = \tau \angle \phi$
Insertion Loss (dB) = -20 Log $\left| \frac{V_{\text{Trans}}}{V_{\text{Inc}}} \right|$ = -20 Log(τ)
Gain (dB) = 20 Log $\left| \frac{V_{\text{Trans}}}{V_{\text{Inc}}} \right|$ = 20 Log(τ)

Linear Versus Nonlinear Behavior

Magnitude Variation with Frequency

 $F(t) = \sin wt + 1/3 \sin 3wt + 1/5 \sin 5wt$

Anticipate ____Accelerate ____Achieve

Agilent Technologies

May 30, 2013

Phase Variation with Frequency

Deviation from Linear Phase

Use electrical delay to remove linear portion of phase response

Low resolution

High resolution

Why Measure Group Delay?

Same peak-peak phase ripple can result in different group delay

Characterizing Unknown Devices

Using parameters (H, Y, Z, S) to characterize devices:

- Gives linear behavioral model of our device
- Measure parameters (e.g. voltage and current) versus frequency under various source and load conditions (e.g. short and open circuits)
- Compute device parameters from measured data
- Predict circuit performance under any source and load conditions

<u>H-parameters</u>	<u>Y-parame</u>	<u>ters</u>	Z-parameters
$V_1 = h_{11}I_1 + h_{12}V_2$	$I_1 = y_{11}V_1 +$	• y ₁₂ V ₂	$V_1 = Z_{11}I_1 + Z_{12}I_2$
$I_2 = h_{21}I_1 + h_{22}V_2$	$I_2 = y_{21}V_1 +$	- y ₂₂ V ₂	$V_2 = Z_{21}I_1 + Z_{22}I_2$
Υ I	$h_{11} = \frac{V_1}{I_1} \Big _{V_2=0}$ $h_{12} = \frac{V_1}{V_2} \Big _{I_1=0}$	(require (require	es short circuit) es open circuit)

Why Use S-Parameters?

- Relatively easy to obtain at high frequencies
 - Measure voltage traveling waves with a vector network analyzer
 - Don't need shorts/opens (can cause active devices to oscillate or self-destruct)
- Relate to familiar measurements (gain, loss, reflection coefficient ...)
- Can cascade S-parameters of multiple devices to predict system performance
- Can compute H-, Y-, or Z-parameters from S-parameters if desired
- Can easily import and use S-parameter files in electronic-simulation tools

Anticipate ____Accelerate ____Achieve

Agilent Technologies

May 30, 2013

Measuring S-Parameters

Equating S-Parameters With Common Measurement Terms

- S₁₁ = forward reflection coefficient (*input match*)
- S₂₂ = reverse reflection coefficient *(output match)*
- S₂₁ = forward transmission coefficient (gain or loss)
- S₁₂ = reverse transmission coefficient (isolation)

Remember, S-parameters are inherently complex, linear quantities -- however, we often express them in a log-magnitude format

Generalized Network Analyzer Block Diagram (Forward Measurements Shown)

Anticipate ____Accelerate ____Achieve

Agilent Technologies

May 30, 2013

<text><list-item><list-item><list-item><list-item><list-item><list-item>

Signal Separation

· Separate incident and reflected signals

Anticipate ____Accelerate ____Achieve

Agilent Technologies

May 30, 2013

Directivity

Directivity is a measure of how well a directional coupler or bridge can separate signals moving in opposite directions

Directional Bridge

- 50-ohm load at test port balances the bridge -- detector reads zero
- Non-50-ohm load imbalances bridge
- Measuring magnitude and phase of imbalance gives complex impedance
- "Directivity" is difference between maximum and minimum balance
- Advantage: less loss at low frequencies
- Disadvantages: more loss in main arm at high frequencies and less power-handling capability

Anticipate ____Accelerate ____Achieve

Agilent Technologies

May 30, 2013

Interaction of Directivity with the DUT (Without Error Correction)

Detector Types: Narrowband Detection - Tuned Receiver

It is cheaper and easier to make broadband front ends using samplers instead of mixers, but dynamic range is considerably less

Sampler-based front end

PROCESSOR / DISPLA

Dynamic Range and Accuracy

Error Due to Interfering Signal 100 10 phase error Error (dB, deg) 1 magn error 0.1 0.01 0.001 0 -10 -30 -35 -50 -65 -70 -5 -20 -25 -40 -45 -55 -60 -15 Interfering signal or noise (dB)

Dynamic range is very important for measurement accuracy!

Anticipate ____Accelerate ____Achieve

Agilent Technologies

May 30, 2013

T/R Versus S-Parameter Test Sets

Source Image: Constrained of the second second

Transmission/Reflection Test Set

- RF comes out port 1; port 2 is receiver
- Forward measurements only
- Response, one-port cal available

S-Parameter Test Set

- RF comes out port 1 or port 2
- Forward and reverse measurements
- Two-port calibration possible

Modern VNA Block Diagram (2-Port PNA-X)

Anticipate ____Accelerate ____Achieve

🔅 Agilent Technologies

May 30, 2013

Processor / Display

- Markers
- Limit lines
- · Pass/fail indicators
- Linear/log formats
- Grid/polar/Smith charts
- Time-domain transform
- Trace math

Achieving Measurement Flexibility

Anticipate ____Accelerate ____Achieve

Agilent Technologies

May 30, 2013

Three Channel Example

Agenda

- What measurements do we make?
- Network analyzer hardware
- Error models and calibration
- Advanced S-parameter measurements

Anticipate ____Accelerate ____Achieve

🔅 Agilent Technologies

May 30, 2013

The Need For Calibration

Why do we have to calibrate?

- It is impossible to make perfect hardware
- It would be extremely difficult and expensive to make hardware good enough to entirely eliminate the need for error correction

How do we get accuracy?

- With vector-error-corrected calibration
- Not the same as the yearly instrument calibration

What does calibration do for us?

- Removes the largest contributor to measurement uncertainty: systematic errors
- · Provides best picture of true performance of DUT

Systematic error

Measurement Error Modeling

Systematic errors

- Due to imperfections in the analyzer and test setup
- · Assumed to be time invariant (predictable)
- · Generally, are largest sources or error

Random errors

- Vary with time in random fashion (unpredictable)
- Main contributors: instrument noise, switch and connector repeatability

Anticipate ____Accelerate ____Achieve

Drift errors

- Due to system performance changing *after* a calibration has been done
- Primarily caused by temperature variation

Agilent Technologies

Systematic Measurement Errors

Six forward and six reverse error terms yields 12 error terms for two-port devices

May 30, 2013

What is Vector-Error Correction?

Vector-error correction...

- · Is a process for characterizing systematic error terms
- Measures known electrical standards
- Removes effects of error terms from subsequent measurements

Electrical standards...

Anticipate ____Accelerate ____Achieve

- Can be mechanical or electronic
- Are often an open, short, load, and thru, but can be arbitrary impedances as well

Measured

Errors

Actual

🗧 Agilent Technologies

May 30, 2013

Using Known Standards to Correct for Systematic Errors

- 1-port calibration (reflection measurements)
 - Only three systematic error terms measured
 - Directivity, source match, and reflection tracking
- Full two-port calibration (reflection and transmission measurements)
 - . Twelve systematic error terms measured
 - Usually requires 12 measurements on four known standards (SOLT)
- Standards defined in cal kit definition file
 - . Network analyzer contains standard cal kit definitions
 - . CAL KIT DEFINITION MUST MATCH ACTUAL CAL KIT USED!
 - . User-built standards must be characterized and entered into user cal-kit

Reflection: One-Port Model

- Assumes good termination at port two if testing two-port devices
- If using port two of NA and DUT reverse isolation is low (e.g., filter passband):
 - Assumption of good termination is not valid
 - Two-port error correction yields better results

Anticipate ____Accelerate ____Achieve

Agilent Technologies

May 30, 2013

Before and After A One-Port Calibration

Two-Port Error Correction

- Analyzer must make forward and reverse sweep to update any one S-parameter
- Luckily, you don't need to know these equations to **use** a network analyzers!!!

🔅 Agilent Technologies

May 30, 2013

Crosstalk: Signal Leakage Between Test Ports During Transmission

Can be a problem with:

- High-isolation devices (e.g., switch in open position)
- High-dynamic range devices (some filter stopbands)

Isolation calibration

Anticipate ____Accelerate ____Achieve

- Adds noise to error model (measuring near noise floor of system)
- Only perform if really needed (use averaging if necessary)
- If crosstalk is **independent** of DUT match, use two terminations
- If dependent on DUT match, use two DUTs with termination on output

DUT

Errors and Calibration Standards

Response versus Two-Port Calibration

Measuring filter insertion loss

Anticipate ____Accelerate ____Achieve

🔅 Agilent Technologies

May 30, 2013

ECal: Electronic Calibration

- Variety of two- and four-port modules cover 300 kHz to 67 GHz
- Nine connector types available, 50 and 75 ohms
- Single-connection calibration
 - dramatically reduces calibration time
 - makes calibrations easy to perform
 - minimizes wear on cables and standards
 - eliminates operator errors
- Highly repeatable temperature-compensated characterized terminations provide excellent accuracy

Microwave modules use a transmission line shunted by PIN-diode switches in various combinations

USB controlled

ECAL User Characterizations

1. Select adapters for the 2. Perform a calibration - Adapters module to match the using appropriate Port 1 »Я \mathbf{K} connector configuration mechanical standards. ECal ъ of the DUT. Short 🖬 -DUT Open 🖬 -Load 🖬 ---3. Measure the ECal 4. VNA stores resulting **PNA** module, including characterization data Port 1 Port 1 Port 2 inside the module. adapters, as though it were a DUT Anticipate ____Accelerate ____Achieve 🔅 Agilent Technologies

Unknown-Thru Calibration Analyzer Port 1 Port 2 DUT Cal Methods are listed in order of ascending accuracy (least accurate first): Uncharacterized Thru Adapter • Electronic Calibrator (Ecal) • Ecal with Unknown Thru Analyzer Mechanical with Unknown Thru Cal Port 1 Port 2 dDUTh Adapter Removal C d b 5 Thru 凸 Short Short 凸 Open Open Load Load

PNA

T

Thru

PNA

Port 2

🕒 Short

🖬 Open

Load

Port 2

May 30, 2013

C

-

Thru-Reflect-Line (TRL) Calibration

We know about Short-Open-Load-Thru (SOLT) calibration... What is TRL?

- A two-port calibration technique
- Good for non-coaxial environments (waveguide, fixtures, wafer probing)
- Characterizes same 12 systematic errors as the more common SOLT cal
- Uses practical calibration standards that are easily fabricated and characterized
- Other variations: Line-Reflect-Match (LRM), Thru-Reflect-Match (TRM), plus many others

TRL was developed for non-coaxial microwave measurements

Anticipate ____Accelerate ____Achieve

🔅 Agilent Technologies

May 30, 2013

Agenda

- What measurements do we make?
- Network analyzer hardware
- Error models and calibration
- Advanced S-parameter measurements

Advanced S-parameter measurements

- Multiport S-parameter measurement
- Mixed-mode S-parameter measurement
- Time domain analysis
- Gain Compression

Anticipate ____Accelerate ____Achieve

Agilent Technologies

May 30, 2013

4-port VNA Block Diagram (E5071C)

Full 3 and 4-Port Error Correction

When full 3 and 4-port cal required?

- Reflection from uncorrected test port affects measurement.
- Measure mixed-mode S-parameters

Ex) 2-way power divider (isolation between output ports=13 dB)

73

Advanced S-parameter measurements

- Multiport S-parameter measurement
- Mixed-mode S-parameter measurement
- Time domain analysis
- Gain Compression

Anticipate ____Accelerate ____Achieve

Agilent Technologies

May 30, 2013

Differential S-parameter measurement

Differential S-parameter measurement

Sdd21 measurement using ideal balun transformers

Anticipate ____Accelerate ____Achieve

🗧 Agilent Technologies

Differential S-parameter measurement

We consider transmission characteristic of four signal paths;

- S31 path: $(1/sqr(2)) \times S31 \times (1/sqr(2)) = (1/2) \times S31$ S41 path: $(1/sqr(2)) \times S41 \times (-1/sqr(2)) = (-1/2) \times S41$ S32 path: $(-1/sqr(2)) \times S32 \times (1/sqr(2)) = (-1/2) \times S32$
- S42 path: (-1/sqr(2)) x S42 x (-1/sqr(2)) = (1/2) x S42

By superimposing above four equations, we can obtain Sdd21;

 $Sdd21 = (1/2)^*(S31-S32-S41+S42)$

Differential S-parameter measurement

Sdd11 can be derived by superimposing transmission characteristics of S11, S12, S21, and S22 signal paths;

 $Sdd11 = (1/2)^*(S11-S21-S12+S22)$

Anticipate ____Accelerate ____Achieve

Agilent Technologies

Differential-Common S-parameter measurement

Mixed-mode S-parameter Measurement Example - Differential amplifier

Advanced S-parameter measurements

- Multiport S-parameter measurement
- Mixed-mode S-parameter measurement
- Time domain analysis
- Gain Compression

In the linear system

AnticipateAccelerateAchieve	Acilent Technologies	
82	Agrient rechnologies	May 30, 2013

VNA's time domain conversion (case of low-pass modes)

Window function

Anticipate ____Accelerate ____Achieve

🔆 Agilent Technologies

Window function

Time resolution

Higher Fstop \rightarrow Higher time resolution.

Ex) 2-times higher Fstop with same NOP \rightarrow Time resolution is 2-times higher (but time span is $\frac{1}{2}$).

Example of VNA-based time domain analysis (E5071C)

Advanced S-parameter measurements

- Multiport S-parameter measurement
- Mixed-mode S-parameter measurement
- Time domain analysis
- Gain Compression

Parameter to define the transition between the linear and nonlinear region of an active device.
The compression point is observed as x dB drop in the gain with VNA's power sweep.

89

Gain compression over frequency

Gain compression over frequency

AnticipateAccelerateAchieve	Arilant Technologian	
90	Agrient recimologies	May 30, 2013

Gain compression measurement example

E5072A Network Analyzer	
1 Active Ch/Trace 2 Response 3 Stimulus 4 Mir/Analysis 5 Instr State	Resize
▶ Tr1 S21 Log Mag 5.000 dB / Ref 0.000 dB [RT]	1 E5072A Menu
20:00 >1 2.5235 dBm 23.283 dB 15:00 2 -1.4000 dBm 24.283 dB	
5,888	
=14°.88	Ch 1 (vs. Input power):
-29:88	
Tr2 B(1) Log Mag 10.00 dB / Ref 0.000 dBm	IT 1: Gain Compresssion vs. Pin
40:00 >1 2.5235 dBm 25.745 dBm 38.88 2 -1.4000 dBm 22.816 dBm	Tr 2: Pout vs. Pin
18 08	
-38:88	Dirplay
-\$8:88	Uispiay
1 Start -15 dBm CW 1 GHz	Stop 5 dBm PC? RCL C? #
Tr1 S21 Lin Mag 2.000 U / Ref -12.00 U Tr2 S21 Lin Mag 500.0m U / Ref 22.00 U	
27.00	Calibration
26.50	
25.50	Stimulus D.
25.00	Ch 2 (yc Eroquopoy)
24.50	
23.50	Tr 1: Pin @ P1dB vs. Freq
23.00	
22.50	Ir 2: Pout @ P1dB vs. Freq
22.00	Ston 2.4 GHz Off
Erec : 2148 000[MHz] P1 0dB : Toput 1 358[dBm] Output 25 789[dBm]	
Freq : 2176.000[MHz], P1.0dB : Input 1.426[dBm], Output 25.798[dBm]	ESU/2A Ampliner wizard
Freq : 2232.000[MHZ], P1.0dB : Input 1.540[ddm], Output 25.661[ddm]	Trigger X dB Compression
Freq : 2288.000[MHZ], P1.0dB : Input 1.82/[dBm], Output 25.894[dBm] Freq : 2288.000[MHZ], P1.0dB : Input 1.910[dBm], Output 25.750[dBm]	Continuous Single x = 1.0 dB (0 < x <= 10)
Freq : 2316.000[MHz], P1.0dB : Input 2.0/6[dBm], Output 25.801[dBm] Freq : 2344.000[MHz], P1.0dB : Input 2.205[dBm], Output 25.840[dBm]	Reference
Freq : 2372.000[MHz], P1.0dB : Input 2.250[dBm], Output 25.820[dBm] Freq : 2400.000[MHz], P1.0dB : Input 2.523[dBm], Output 25.745[dBm]	Max Gain C Input Power Level -15 dBm Exit
	Bus Kun ExtRet Svcl 2011-10-17 15:10
Start E5072A Network Anal St VRA	step1.PNG - Paint

RF amplifier test

Network Analysis Back to Basics

✓ What measurements do we make? ✓ Network analyzer hardware DUT ✓ Error models and calibration ✓ Advanced S-parameter measurements SHORT OPEN LOAD 1 1.1960 25 10.161 Anticipate ____Accelerate ____Achieve 🔆 Agilent Technologies May 30, 2013

THANK YOU!

