17: Transmission Lines

- Transmission Lines
- Transmission Line

Equations

- Solution to Transmission

Line Equations

- Forward Wave
- Forward + Backward

Waves

- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line

17: Transmission Lines
Characteristics

- Summary

Transmission Lines

17: Transmission Lines

- Transmission Lines
- Transmission Line

Equations

- Solution to Transmission

Line Equations

- Forward Wave
- Forward + Backward

Waves

- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line

Characteristics

- Summary

Previously assume that any change in $v_{0}(t)$ appears instantly at $v_{L}(t)$.

Transmission Lines

17: Transmission Lines

- Transmission Lines
- Transmission Line

Equations

- Solution to Transmission

Line Equations

- Forward Wave
- Forward + Backward

Waves

- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line

Previously assume that any change in $v_{0}(t)$ appears instantly at $v_{L}(t)$.
This is not true.

- Summary

Transmission Lines

17: Transmission Lines

- Transmission Lines
- Transmission Line

Equations

- Solution to Transmission

Line Equations

- Forward Wave
- Forward + Backward

Waves

- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line

Characteristics

- Summary

Previously assume that any change in $v_{0}(t)$ appears instantly at $v_{L}(t)$.
This is not true.
If fact signals travel at around half the speed of light ($c=30 \mathrm{~cm} / \mathrm{ns}$).

Transmission Lines

17: Transmission Lines

- Transmission Lines
- Transmission Line

Equations

- Solution to Transmission

Line Equations

- Forward Wave
- Forward + Backward

Waves

- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line

Characteristics

- Summary

Previously assume that any change in $v_{0}(t)$ appears instantly at $v_{L}(t)$.
This is not true.
If fact signals travel at around half the speed of light ($c=30 \mathrm{~cm} / \mathrm{ns}$).
Reason: all wires have capacitance to ground and to neighbouring conductors and also self-inductance. It takes time to change the current through an inductor or voltage across a capacitor.

Transmission Lines

17: Transmission Lines

- Transmission Lines
- Transmission Line

Equations

- Solution to Transmission

Line Equations

- Forward Wave
- Forward + Backward

Waves

- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line

Characteristics

- Summary

Previously assume that any change in $v_{0}(t)$ appears instantly at $v_{L}(t)$.
This is not true.
If fact signals travel at around half the speed of light ($c=30 \mathrm{~cm} / \mathrm{ns}$).
Reason: all wires have capacitance to ground and to neighbouring conductors and also self-inductance. It takes time to change the current through an inductor or voltage across a capacitor.

A transmission line is a wire with a uniform goemetry along its length: the capacitance and inductance of any segment is proportional to its length.

Transmission Lines

17: Transmission Lines

- Transmission Lines
- Transmission Line

Equations

- Solution to Transmission

Line Equations

- Forward Wave
- Forward + Backward

Waves

- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line

Characteristics

- Summary

Previously assume that any change in $v_{0}(t)$ appears instantly at $v_{L}(t)$.
This is not true.
If fact signals travel at around half the speed of light ($c=30 \mathrm{~cm} / \mathrm{ns}$).
Reason: all wires have capacitance to ground and to neighbouring conductors and also self-inductance. It takes time to change the current through an inductor or voltage across a capacitor.

A transmission line is a wire with a uniform goemetry along its length: the capacitance and inductance of any segment is proportional to its length. We represent as a large number of small inductors and capacitors spaced along the line.

Transmission Lines

- Transmission Lines
- Transmission Line

Equations

- Solution to Transmission

Line Equations

- Forward Wave
- Forward + Backward

Waves

- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line

Characteristics

- Summary

Previously assume that any change in $v_{0}(t)$ appears instantly at $v_{L}(t)$.
This is not true.
If fact signals travel at around half the speed of light ($c=30 \mathrm{~cm} / \mathrm{ns}$).
Reason: all wires have capacitance to ground and to neighbouring conductors and also self-inductance. It takes time to change the current through an inductor or voltage across a capacitor.

A transmission line is a wire with a uniform goemetry along its length: the capacitance and inductance of any segment is proportional to its length. We represent as a large number of small inductors and capacitors spaced along the line.
The signal speed along a transmisison line is predictable.

Transmission Line Equations

17: Transmission Lines

- Transmission Lines
- Transmission Line

Equations

- Solution to Transmission

Line Equations

- Forward Wave
- Forward + Backward

Waves

- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line

Characteristics

- Summary

A short section of line δx long:
$v(x, t)$ and $i(x, t)$ depend on both position and time.

Transmission Line Equations

17: Transmission Lines

- Transmission Lines
- Transmission Line

Equations

- Solution to Transmission

Line Equations

- Forward Wave
- Forward + Backward

Waves

- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line

Characteristics

- Summary

A short section of line δx long:
$v(x, t)$ and $i(x, t)$ depend on both position and time.

Small $\delta x \Rightarrow$ ignore 2nd order derivatives:

$$
\frac{\partial v(x, t)}{\partial t}=\frac{\partial v(x+\delta x, t)}{\partial t} \triangleq \frac{\partial v}{\partial t} .
$$

Transmission Line Equations

17: Transmission Lines

- Transmission Lines
- Transmission Line

Equations

- Solution to Transmission

Line Equations

- Forward Wave
- Forward + Backward

Waves

- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line

Characteristics

- Summary

A short section of line δx long:
$v(x, t)$ and $i(x, t)$ depend on both position and time.

Small $\delta x \Rightarrow$ ignore 2nd order derivatives:

$$
\frac{\partial v(x, t)}{\partial t}=\frac{\partial v(x+\delta x, t)}{\partial t} \triangleq \frac{\partial v}{\partial t} .
$$

Basic Equations

KVL: $\quad v(x, t)=V_{2}+v(x+\delta x, t)+V_{1}$
KCL: $\quad i(x, t)=i_{C}+i(x+\delta x, t)$

Transmission Line Equations

17: Transmission Lines

- Transmission Lines
- Transmission Line

Equations

- Solution to Transmission

Line Equations

- Forward Wave
- Forward + Backward

Waves

- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line

Characteristics

- Summary

A short section of line δx long:
$v(x, t)$ and $i(x, t)$ depend on both position and time.

Small $\delta x \Rightarrow$ ignore 2nd order derivatives:

$$
\frac{\partial v(x, t)}{\partial t}=\frac{\partial v(x+\delta x, t)}{\partial t} \triangleq \frac{\partial v}{\partial t} .
$$

Basic Equations

KVL: $\quad v(x, t)=V_{2}+v(x+\delta x, t)+V_{1}$
KCL: $\quad i(x, t)=i_{C}+i(x+\delta x, t)$
Capacitor equation: $\quad C \frac{\partial v}{\partial t}=i_{C}=i(x, t)-i(x+\delta x, t)=-\frac{\partial i}{\partial x} \delta x$

Transmission Line Equations

17: Transmission Lines

- Transmission Lines
- Transmission Line

Equations

- Solution to Transmission

Line Equations

- Forward Wave
- Forward + Backward

Waves

- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line

Characteristics

- Summary

A short section of line δx long:
$v(x, t)$ and $i(x, t)$ depend on both position and time.

Small $\delta x \Rightarrow$ ignore 2 nd order derivatives:

$$
\frac{\partial v(x, t)}{\partial t}=\frac{\partial v(x+\delta x, t)}{\partial t} \triangleq \frac{\partial v}{\partial t} .
$$

Basic Equations

KVL: $\quad v(x, t)=V_{2}+v(x+\delta x, t)+V_{1}$
KCL: $\quad i(x, t)=i_{C}+i(x+\delta x, t)$
Capacitor equation: $\quad C \frac{\partial v}{\partial t}=i_{C}=i(x, t)-i(x+\delta x, t)=-\frac{\partial i}{\partial x} \delta x$
Inductor equation (L_{1} and L_{2} have the same current):

$$
\left(L_{1}+L_{2}\right) \frac{\partial i}{\partial t}=V_{1}+V_{2}=v(x, t)-v(x+\delta x, t)=-\frac{\partial v}{\partial x} \delta x
$$

Transmission Line Equations

17: Transmission Lines

- Transmission Lines
- Transmission Line

Equations

- Solution to Transmission

Line Equations

- Forward Wave
- Forward + Backward

Waves

- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line

Characteristics

- Summary

A short section of line δx long:
$v(x, t)$ and $i(x, t)$ depend on both position and time.

Small $\delta x \Rightarrow$ ignore 2 nd order derivatives:

$$
\frac{\partial v(x, t)}{\partial t}=\frac{\partial v(x+\delta x, t)}{\partial t} \triangleq \frac{\partial v}{\partial t} .
$$

Basic Equations

KVL: $\quad v(x, t)=V_{2}+v(x+\delta x, t)+V_{1}$
KCL: $\quad i(x, t)=i_{C}+i(x+\delta x, t)$
Capacitor equation: $\quad C \frac{\partial v}{\partial t}=i_{C}=i(x, t)-i(x+\delta x, t)=-\frac{\partial i}{\partial x} \delta x$
Inductor equation (L_{1} and L_{2} have the same current):

$$
\left(L_{1}+L_{2}\right) \frac{\partial i}{\partial t}=V_{1}+V_{2}=v(x, t)-v(x+\delta x, t)=-\frac{\partial v}{\partial x} \delta x
$$

Transmission Line Equations

$$
\begin{aligned}
& C_{0} \frac{\partial v}{\partial t}=-\frac{\partial i}{\partial x} \\
& L_{0} \frac{\partial i}{\partial t}=-\frac{\partial v}{\partial x}
\end{aligned}
$$

Transmission Line Equations

17: Transmission Lines

- Transmission Lines
- Transmission Line

Equations

- Solution to Transmission

Line Equations

- Forward Wave
- Forward + Backward

Waves

- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line

Characteristics

- Summary

A short section of line δx long:
$v(x, t)$ and $i(x, t)$ depend on both position and time.

Small $\delta x \Rightarrow$ ignore 2 nd order derivatives:

$$
\frac{\partial v(x, t)}{\partial t}=\frac{\partial v(x+\delta x, t)}{\partial t} \triangleq \frac{\partial v}{\partial t} .
$$

Basic Equations

KVL: $\quad v(x, t)=V_{2}+v(x+\delta x, t)+V_{1}$
$\mathrm{KCL}: \quad i(x, t)=i_{C}+i(x+\delta x, t)$
Capacitor equation: $\quad C \frac{\partial v}{\partial t}=i_{C}=i(x, t)-i(x+\delta x, t)=-\frac{\partial i}{\partial x} \delta x$
Inductor equation (L_{1} and L_{2} have the same current):

$$
\left(L_{1}+L_{2}\right) \frac{\partial i}{\partial t}=V_{1}+V_{2}=v(x, t)-v(x+\delta x, t)=-\frac{\partial v}{\partial x} \delta x
$$

Transmission Line Equations

$$
\begin{aligned}
& C_{0} \frac{\partial v}{\partial t}=-\frac{\partial i}{\partial x} \\
& L_{0} \frac{\partial i}{\partial t}=-\frac{\partial v}{\partial x}
\end{aligned}
$$

where $C_{0}=\frac{C}{\delta x}$ is the capacitance per unit length (Farads $/ \mathrm{m}$) and $L_{0}=\frac{L_{1}+L_{2}}{\delta x}$ is the total inductance per unit length (Henries/m).

Solution to Transmission Line Equations

17: Transmission Lines

- Transmission Lines
- Transmission Line

Equations

- Solution to Transmission

Line Equations

- Forward Wave
- Forward + Backward

Waves

- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line

Characteristics

- Summary

Transmission Line Equations: $\quad C_{0} \frac{\partial v}{\partial t}=-\frac{\partial i}{\partial x} \quad L_{0} \frac{\partial i}{\partial t}=-\frac{\partial v}{\partial x}$

Solution to Transmission Line Equations

17: Transmission Lines

- Transmission Lines
- Transmission Line

Equations

- Solution to Transmission

Line Equations

- Forward Wave
- Forward + Backward

Waves

- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line

Characteristics

- Summary

Transmission Line Equations: $\quad C_{0} \frac{\partial v}{\partial t}=-\frac{\partial i}{\partial x} \quad L_{0} \frac{\partial i}{\partial t}=-\frac{\partial v}{\partial x}$
General solution:

$$
\begin{aligned}
v(t, x) & =f\left(t-\frac{x}{u}\right)+g\left(t+\frac{x}{u}\right) \\
i(t, x) & =\frac{f\left(t-\frac{x}{u}\right)-g\left(t+\frac{x}{u}\right)}{Z_{0}} \\
\text { where } u & =\sqrt{\frac{1}{L_{0} C_{0}}} \text { and } Z_{0}=\sqrt{\frac{L_{0}}{C_{0}}} .
\end{aligned}
$$

Solution to Transmission Line Equations

17: Transmission Lines

- Transmission Lines
- Transmission Line

Equations

- Solution to Transmission

Line Equations

- Forward Wave
- Forward + Backward

Waves

- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line

Characteristics

- Summary

Transmission Line Equations: $\quad C_{0} \frac{\partial v}{\partial t}=-\frac{\partial i}{\partial x} \quad L_{0} \frac{\partial i}{\partial t}=-\frac{\partial v}{\partial x}$
General solution:

$$
\begin{aligned}
v(t, x) & =f\left(t-\frac{x}{u}\right)+g\left(t+\frac{x}{u}\right) \\
i(t, x) & =\frac{f\left(t-\frac{x}{u}\right)-g\left(t+\frac{x}{u}\right)}{Z_{0}} \\
\text { where } u & =\sqrt{\frac{1}{L_{0} C_{0}}} \text { and } Z_{0}=\sqrt{\frac{L_{0}}{C_{0}}} .
\end{aligned}
$$

u is the propagation velocity and Z_{0} is the characteristic impedance.

Solution to Transmission Line Equations

17: Transmission Lines

- Transmission Lines
- Transmission Line

Equations

- Solution to Transmission

Line Equations

- Forward Wave
- Forward + Backward

Waves

- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line

Characteristics

- Summary

Transmission Line Equations: $\quad C_{0} \frac{\partial v}{\partial t}=-\frac{\partial i}{\partial x} \quad L_{0} \frac{\partial i}{\partial t}=-\frac{\partial v}{\partial x}$
General solution:

$$
\begin{aligned}
v(t, x) & =f\left(t-\frac{x}{u}\right)+g\left(t+\frac{x}{u}\right) \\
i(t, x) & =\frac{f\left(t-\frac{x}{u}\right)-g\left(t+\frac{x}{u}\right)}{Z_{0}} \\
\text { where } u & =\sqrt{\frac{1}{L_{0} C_{0}}} \text { and } Z_{0}=\sqrt{\frac{L_{0}}{C_{0}}} .
\end{aligned}
$$

u is the propagation velocity and Z_{0} is the characteristic impedance.
$f()$ and $g()$ can be any differentiable functions.

Solution to Transmission Line Equations

17: Transmission Lines

- Transmission Lines
- Transmission Line

Equations

- Solution to Transmission

Line Equations

- Forward Wave
- Forward + Backward

Waves

- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line

Characteristics

- Summary

Transmission Line Equations: $\quad C_{0} \frac{\partial v}{\partial t}=-\frac{\partial i}{\partial x} \quad L_{0} \frac{\partial i}{\partial t}=-\frac{\partial v}{\partial x}$
General solution:

$$
\begin{aligned}
v(t, x) & =f\left(t-\frac{x}{u}\right)+g\left(t+\frac{x}{u}\right) \\
i(t, x) & =\frac{f\left(t-\frac{x}{u}\right)-g\left(t+\frac{x}{u}\right)}{Z_{0}} \\
\text { where } u & =\sqrt{\frac{1}{L_{0} C_{0}}} \text { and } Z_{0}=\sqrt{\frac{L_{0}}{C_{0}}} .
\end{aligned}
$$

u is the propagation velocity and Z_{0} is the characteristic impedance.
$f()$ and $g()$ can be any differentiable functions.
Verify by substitution:

$$
-\frac{\partial i}{\partial x}=-\left(\frac{-f^{\prime}\left(t-\frac{x}{u}\right)-g^{\prime}\left(t+\frac{x}{u}\right)}{Z_{0}} \times \frac{1}{u}\right)
$$

Solution to Transmission Line Equations

17: Transmission Lines

- Transmission Lines
- Transmission Line

Equations

- Solution to Transmission

Line Equations

- Forward Wave
- Forward + Backward

Waves

- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line

Characteristics

- Summary

Transmission Line Equations: $\quad C_{0} \frac{\partial v}{\partial t}=-\frac{\partial i}{\partial x} \quad L_{0} \frac{\partial i}{\partial t}=-\frac{\partial v}{\partial x}$
General solution:

$$
\begin{aligned}
v(t, x) & =f\left(t-\frac{x}{u}\right)+g\left(t+\frac{x}{u}\right) \\
i(t, x) & =\frac{f\left(t-\frac{x}{u}\right)-g\left(t+\frac{x}{u}\right)}{Z_{0}} \\
\text { where } u & =\sqrt{\frac{1}{L_{0} C_{0}}} \text { and } Z_{0}=\sqrt{\frac{L_{0}}{C_{0}}} .
\end{aligned}
$$

u is the propagation velocity and Z_{0} is the characteristic impedance.
$f()$ and $g()$ can be any differentiable functions.
Verify by substitution:

$$
\begin{aligned}
-\frac{\partial i}{\partial x} & =-\left(\frac{-f^{\prime}\left(t-\frac{x}{u}\right)-g^{\prime}\left(t+\frac{x}{u}\right)}{Z_{0}} \times \frac{1}{u}\right) \\
& =C_{0}\left(f^{\prime}\left(t-\frac{x}{u}\right)+g^{\prime}\left(t+\frac{x}{u}\right)\right)=C_{0} \frac{\partial v}{\partial t}
\end{aligned}
$$

Forward Wave

17: Transmission Lines

- Transmission Lines
- Transmission Line

Equations

- Solution to Transmission

Line Equations

- Forward Wave
- Forward + Backward

Waves

- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line

Characteristics

- Summary

Suppose:

$$
\begin{aligned}
& u=15 \mathrm{~cm} / \mathrm{ns} \\
& \text { and } g(t) \equiv 0 \\
& \Rightarrow v(x, t)=f\left(t-\frac{x}{u}\right)
\end{aligned}
$$

Forward Wave

17: Transmission Lines

- Transmission Lines
- Transmission Line

Equations

- Solution to Transmission

Line Equations

- Forward Wave
- Forward + Backward

Waves

- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line

Characteristics

- Summary

Suppose:

$$
\begin{aligned}
& u=15 \mathrm{~cm} / \mathrm{ns} \\
& \text { and } g(t) \equiv 0 \\
& \Rightarrow v(x, t)=f\left(t-\frac{x}{u}\right)
\end{aligned}
$$

- At $x=0 \mathrm{~cm}[\mathbf{\Delta}]$,

$$
v_{S}(t)=f\left(t-\frac{0}{u}\right)
$$

Forward Wave

17: Transmission Lines

- Transmission Lines
- Transmission Line

Equations

- Solution to Transmission

Line Equations

- Forward Wave
- Forward + Backward

Waves

- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line

Characteristics

- Summary

Suppose:

$$
\begin{aligned}
& u=15 \mathrm{~cm} / \mathrm{ns} \\
& \text { and } g(t) \equiv 0 \\
& \Rightarrow v(x, t)=f\left(t-\frac{x}{u}\right)
\end{aligned}
$$

- At $x=0 \mathrm{~cm}[\mathbf{\Delta}]$, $v_{S}(t)=f\left(t-\frac{0}{u}\right)$
- At $x=45 \mathrm{~cm}[\mathbf{\Delta}]$, $v(45, t)=f\left(t-\frac{45}{u}\right)$

Forward Wave

17: Transmission Lines

- Transmission Lines
- Transmission Line

Equations

- Solution to Transmission

Line Equations

- Forward Wave
- Forward + Backward

Waves

- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line

Characteristics

- Summary

Suppose:

$$
\begin{aligned}
& u=15 \mathrm{~cm} / \mathrm{ns} \\
& \text { and } g(t) \equiv 0 \\
& \Rightarrow v(x, t)=f\left(t-\frac{x}{u}\right)
\end{aligned}
$$

- At $x=0 \mathrm{~cm}[\mathbf{\Delta}]$,
$v_{S}(t)=f\left(t-\frac{0}{u}\right)$
- At $x=45 \mathrm{~cm}[\mathbf{\Delta}]$, $v(45, t)=f\left(t-\frac{45}{u}\right)$
 $f\left(t-\frac{45}{u}\right)$ is exactly the same as $f(t)$ but delayed by $\frac{45}{u}=3$ ns.

Forward Wave

17: Transmission Lines

- Transmission Lines
- Transmission Line

Equations

- Solution to Transmission

Line Equations

- Forward Wave
- Forward + Backward

Waves

- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line

Characteristics

- Summary

Suppose:

$$
\begin{aligned}
& u=15 \mathrm{~cm} / \mathrm{ns} \\
& \text { and } g(t) \equiv 0 \\
& \Rightarrow v(x, t)=f\left(t-\frac{x}{u}\right)
\end{aligned}
$$

- At $x=0 \mathrm{~cm}[\mathbf{\Delta}]$,
$v_{S}(t)=f\left(t-\frac{0}{u}\right)$
- At $x=45 \mathrm{~cm}[\mathbf{\Delta}]$, $v(45, t)=f\left(t-\frac{45}{u}\right)$
 $f\left(t-\frac{45}{u}\right)$ is exactly the same as $f(t)$ but delayed by $\frac{45}{u}=3$ ns.
- At $x=90 \mathrm{~cm}[\mathbf{\Delta}], v_{R}(t)=f\left(t-\frac{90}{u}\right)$; now delayed by 6 ns .

Forward Wave

17: Transmission Lines

- Transmission Lines
- Transmission Line

Equations

- Solution to Transmission

Line Equations

- Forward Wave
- Forward + Backward

Waves

- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line

Characteristics

- Summary

Suppose:

$$
\begin{aligned}
& u=15 \mathrm{~cm} / \mathrm{ns} \\
& \text { and } g(t) \equiv 0 \\
& \Rightarrow v(x, t)=f\left(t-\frac{x}{u}\right)
\end{aligned}
$$

- At $x=0 \mathrm{~cm}[\mathbf{\Delta}]$,

$$
v_{S}(t)=f\left(t-\frac{0}{u}\right)
$$

- At $x=45 \mathrm{~cm}[\mathbf{\Delta}]$, $v(45, t)=f\left(t-\frac{45}{u}\right)$
 $f\left(t-\frac{45}{u}\right)$ is exactly the same as $f(t)$ but delayed by $\frac{45}{u}=3$ ns.
- At $x=90 \mathrm{~cm}[\mathbf{\Delta}], v_{R}(t)=f\left(t-\frac{90}{u}\right)$; now delayed by 6 ns .

Waveform at $x=0$ completely determines the waveform everywhere else.

Forward Wave

17: Transmission Lines

- Transmission Lines
- Transmission Line

Equations

- Solution to Transmission

Line Equations

- Forward Wave
- Forward + Backward

Waves

- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line

Characteristics

- Summary

Suppose:

$$
\begin{aligned}
& u=15 \mathrm{~cm} / \mathrm{ns} \\
& \text { and } g(t) \equiv 0 \\
& \Rightarrow v(x, t)=f\left(t-\frac{x}{u}\right)
\end{aligned}
$$

- At $x=0 \mathrm{~cm}[\mathbf{\Delta}]$,

$$
v_{S}(t)=f\left(t-\frac{0}{u}\right)
$$

- At $x=45 \mathrm{~cm}[\mathbf{\Delta}]$, $v(45, t)=f\left(t-\frac{45}{u}\right)$
 $f\left(t-\frac{45}{u}\right)$ is exactly the same as $f(t)$ but delayed by $\frac{45}{u}=3$ ns.
- At $x=90 \mathrm{~cm}[\mathbf{\Delta}], v_{R}(t)=f\left(t-\frac{90}{u}\right)$; now delayed by 6 ns .

Waveform at $x=0$ completely determines the waveform everywhere else.

Snapshot at $t_{0}=4 \mathrm{~ns}$:
the waveform has just arrived at the point $x=u t_{0}=60 \mathrm{~cm}$.

Forward Wave

17: Transmission Lines

- Transmission Lines
- Transmission Line

Equations

- Solution to Transmission

Line Equations

- Forward Wave
- Forward + Backward

Waves

- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line

Characteristics

- Summary

Suppose:

$$
\begin{aligned}
& u=15 \mathrm{~cm} / \mathrm{ns} \\
& \text { and } g(t) \equiv 0 \\
& \Rightarrow v(x, t)=f\left(t-\frac{x}{u}\right)
\end{aligned}
$$

- At $x=0 \mathrm{~cm}[\mathbf{\Delta}]$,

$$
v_{S}(t)=f\left(t-\frac{0}{u}\right)
$$

- At $x=45 \mathrm{~cm}[\mathbf{\Delta}]$, $v(45, t)=f\left(t-\frac{45}{u}\right)$
 $f\left(t-\frac{45}{u}\right)$ is exactly the same as $f(t)$ but delayed by $\frac{45}{u}=3$ ns.
- At $x=90 \mathrm{~cm}[\mathbf{\Delta}], v_{R}(t)=f\left(t-\frac{90}{u}\right)$; now delayed by 6 ns .

Waveform at $x=0$ completely determines the waveform everywhere else.

Snapshot at $t_{0}=4 \mathrm{~ns}$:
the waveform has just arrived at the point $x=u t_{0}=60 \mathrm{~cm}$.

Forward Wave

- Transmission Lines
- Transmission Line

Equations

- Solution to Transmission

Line Equations

- Forward Wave
- Forward + Backward

Waves

- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line

Characteristics

- Summary

Suppose:

$$
\begin{aligned}
& u=15 \mathrm{~cm} / \mathrm{ns} \\
& \text { and } g(t) \equiv 0 \\
& \Rightarrow v(x, t)=f\left(t-\frac{x}{u}\right)
\end{aligned}
$$

- At $x=0 \mathrm{~cm}[\mathbf{\Delta}]$,

$$
v_{S}(t)=f\left(t-\frac{0}{u}\right)
$$

- At $x=45 \mathrm{~cm}[\mathbf{\Delta}]$, $v(45, t)=f\left(t-\frac{45}{u}\right)$
 $f\left(t-\frac{45}{u}\right)$ is exactly the same as $f(t)$ but delayed by $\frac{45}{u}=3$ ns.
- At $x=90 \mathrm{~cm}[\mathbf{\Delta}], v_{R}(t)=f\left(t-\frac{90}{u}\right)$; now delayed by 6 ns .

Waveform at $x=0$ completely determines the waveform everywhere else.

Snapshot at $t_{0}=4 \mathrm{~ns}$:
the waveform has just arrived at the point $x=u t_{0}=60 \mathrm{~cm}$.

$f\left(t-\frac{x}{u}\right)$ is a wave travelling forward (i.e. towards +x) along the line.

Forward + Backward Waves

17: Transmission Lines

- Transmission Lines
- Transmission Line

Equations

- Solution to Transmission

Line Equations

- Forward Wave
- Forward + Backward

Waves

- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line

Characteristics

- Summary

Similarly $g\left(t+\frac{x}{u}\right)$ is a wave travelling backwards, i.e. in the $-x$ direction.

Forward + Backward Waves

17: Transmission Lines

- Transmission Lines
- Transmission Line

Equations

- Solution to Transmission

Line Equations

- Forward Wave
- Forward + Backward

Waves

- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line

Characteristics

- Summary

Similarly $g\left(t+\frac{x}{u}\right)$ is a wave travelling backwards, i.e. in the $-x$ direction.

$$
\begin{aligned}
& v(x, t)= \\
& \quad f\left(t-\frac{x}{u}\right)+g\left(t+\frac{x}{u}\right)
\end{aligned}
$$

Forward + Backward Waves

17: Transmission Lines

- Transmission Lines
- Transmission Line

Equations

- Solution to Transmission

Line Equations

- Forward Wave
- Forward + Backward

Waves

- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line

Characteristics

- Summary

Similarly $g\left(t+\frac{x}{u}\right)$ is a wave travelling backwards, i.e. in the $-x$ direction.

$$
\begin{aligned}
& v(x, t)= \\
& \quad f\left(t-\frac{x}{u}\right)+g\left(t+\frac{x}{u}\right) \\
& \text { At } x=0 \mathrm{~cm}[\mathbf{\Delta}], \\
& \quad v_{S}(t)=f(t)+g(t)
\end{aligned}
$$

Forward + Backward Waves

17: Transmission Lines

- Transmission Lines
- Transmission Line

Equations

- Solution to Transmission

Line Equations

- Forward Wave
- Forward + Backward

Waves

- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line

Characteristics

- Summary

Similarly $g\left(t+\frac{x}{u}\right)$ is a wave travelling backwards, i.e. in the $-x$ direction.

$$
\begin{aligned}
& v(x, t)= \\
& \quad f\left(t-\frac{x}{u}\right)+g\left(t+\frac{x}{u}\right) \\
& \text { At } x=0 \mathrm{~cm}[\mathbf{\Delta}], \\
& \quad v_{S}(t)=f(t)+g(t)
\end{aligned}
$$

At $x=90 \mathrm{~cm}[\mathbf{\Delta}], g$ starts at $t=1$ and f starts at $t=6$.

Forward + Backward Waves

17: Transmission Lines

- Transmission Lines
- Transmission Line

Equations

- Solution to Transmission

Line Equations

- Forward Wave
- Forward + Backward

Waves

- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line

Characteristics

- Summary

Similarly $g\left(t+\frac{x}{u}\right)$ is a wave travelling backwards, i.e. in the $-x$ direction.
$v(x, t)=$ $f\left(t-\frac{x}{u}\right)+g\left(t+\frac{x}{u}\right)$

At $x=0 \mathrm{~cm}[\mathbf{\Delta}]$,

$$
v_{S}(t)=f(t)+g(t)
$$

At $x=45 \mathrm{~cm}$ [$\mathbf{\Delta}], g$ is only 1 ns behind f and they add together. At $x=90 \mathrm{~cm}[\mathbf{\Delta}], g$ starts at $t=1$ and f starts at $t=6$.

Forward + Backward Waves

17: Transmission Lines

- Transmission Lines
- Transmission Line

Equations

- Solution to Transmission

Line Equations

- Forward Wave
- Forward + Backward

Waves

- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line

Characteristics

- Summary

Similarly $g\left(t+\frac{x}{u}\right)$ is a wave travelling backwards, i.e. in the $-x$ direction.

$$
\begin{aligned}
& v(x, t)= \\
& \quad f\left(t-\frac{x}{u}\right)+g\left(t+\frac{x}{u}\right) \\
& \text { At } x=0 \mathrm{~cm}[\mathbf{\Delta}], \\
& \quad v_{S}(t)=f(t)+g(t)
\end{aligned}
$$

At $x=45 \mathrm{~cm}$ [$\mathbf{\Delta}], g$ is only 1 ns behind f and they add together. At $x=90 \mathrm{~cm}[\mathbf{\Delta}], g$ starts at $t=1$ and f starts at $t=6$.

A vertical line on the diagram gives a snapshot of the entire line at a time instant t.

Transmission Lines: 17-6 / 13

Forward + Backward Waves

17: Transmission Lines

- Transmission Lines
- Transmission Line

Equations

- Solution to Transmission

Line Equations

- Forward Wave
- Forward + Backward

Waves

- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line

Characteristics

- Summary

Similarly $g\left(t+\frac{x}{u}\right)$ is a wave travelling backwards, i.e. in the $-x$ direction.

$$
\begin{aligned}
& v(x, t)= \\
& \quad f\left(t-\frac{x}{u}\right)+g\left(t+\frac{x}{u}\right) \\
& \text { At } x=0 \mathrm{~cm}[\mathbf{\Delta}], \\
& \quad v_{S}(t)=f(t)+g(t)
\end{aligned}
$$

At $x=45 \mathrm{~cm}$ [$\mathbf{\Delta}], g$ is only 1 ns behind f and they add together. At $x=90 \mathrm{~cm}[\mathbf{\Delta}], g$ starts at $t=1$ and f starts at $t=6$.

A vertical line on the diagram gives a snapshot of the entire line at a time instant t.
f and g first meet at $t=3.5$ and $x=52.5$.

Transmission Lines: 17-6 / 13

Forward + Backward Waves

17: Transmission Lines

- Transmission Lines
- Transmission Line

Equations

- Solution to Transmission

Line Equations

- Forward Wave
- Forward + Backward

Waves

- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line

Characteristics

- Summary

Similarly $g\left(t+\frac{x}{u}\right)$ is a wave travelling backwards, i.e. in the $-x$ direction.

$$
\begin{aligned}
& v(x, t)= \\
& \quad f\left(t-\frac{x}{u}\right)+g\left(t+\frac{x}{u}\right) \\
& \text { At } x=0 \mathrm{~cm}[\mathbf{\Delta}], \\
& \quad v_{S}(t)=f(t)+g(t)
\end{aligned}
$$

At $x=45 \mathrm{~cm}$ [$\mathbf{\Delta}], g$ is only 1 ns behind f and they add together. At $x=90 \mathrm{~cm}[\mathbf{\Delta}], g$ starts at $t=1$ and f starts at $t=6$.

A vertical line on the diagram gives a snapshot of the entire line at a time instant t.
f and g first meet at $t=3.5$ and $x=52.5$.

Magically, f and g pass through each other entirely unaltered.

Power Flow

17: Transmission Lines

- Transmission Lines
- Transmission Line

Equations

- Solution to Transmission

Line Equations

- Forward Wave
- Forward + Backward

Waves

- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line

Characteristics

- Summary

Define $f_{x}(t)=f\left(t-\frac{x}{u}\right)$ and $g_{x}(t)=g\left(t+\frac{x}{u}\right)$ to be the forward and backward waveforms at any point, x.

Power Flow

17: Transmission Lines

- Transmission Lines
- Transmission Line

Equations

- Solution to Transmission

Line Equations

- Forward Wave
- Forward + Backward

Waves

- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line

Characteristics

- Summary

Define $f_{x}(t)=f\left(t-\frac{x}{u}\right)$ and $g_{x}(t)=g\left(t+\frac{x}{u}\right)$ to be the forward and backward waveforms at any point, x.

Then $\quad v_{x}(t)=f_{x}(t)+g_{x}(t) \quad$ and $\quad i_{x}(t)=Z_{0}^{-1}\left(f_{x}(t)-g_{x}(t)\right)$.

Power Flow

17: Transmission Lines

- Transmission Lines
- Transmission Line

Equations

- Solution to Transmission

Line Equations

- Forward Wave
- Forward + Backward

Waves

- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line

Characteristics

- Summary

Define $f_{x}(t)=f\left(t-\frac{x}{u}\right)$ and $g_{x}(t)=g\left(t+\frac{x}{u}\right)$ to be the forward and backward waveforms at any point, x.

Then $\quad v_{x}(t)=f_{x}(t)+g_{x}(t) \quad$ and $\quad i_{x}(t)=Z_{0}^{-1}\left(f_{x}(t)-g_{x}(t)\right)$.
Note: Knowing the waveform $f_{x}(t)$ or $g_{x}(t)$ at any position x, tells you it at all other positions: $f_{y}(t)=f_{x}\left(t-\frac{y-x}{u}\right)$ and $g_{y}(t)=g_{x}\left(t+\frac{y-x}{u}\right)$.

Power Flow

17: Transmission Lines

- Transmission Lines
- Transmission Line

Equations

- Solution to Transmission

Line Equations

- Forward Wave
- Forward + Backward

Waves

- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line

Characteristics

- Summary

Define $f_{x}(t)=f\left(t-\frac{x}{u}\right)$ and $g_{x}(t)=g\left(t+\frac{x}{u}\right)$ to be the forward and backward waveforms at any point, x.

Then $\quad v_{x}(t)=f_{x}(t)+g_{x}(t) \quad$ and $\quad i_{x}(t)=Z_{0}^{-1}\left(f_{x}(t)-g_{x}(t)\right)$.
Note: Knowing the waveform $f_{x}(t)$ or $g_{x}(t)$ at any position x, tells you it at all other positions: $f_{y}(t)=f_{x}\left(t-\frac{y-x}{u}\right)$ and $g_{y}(t)=g_{x}\left(t+\frac{y-x}{u}\right)$.

Power Flow

The power transferred into the shaded region across the boundary at x is

$$
P_{x}(t)=v_{x}(t) i_{x}(t)
$$

Power Flow

17: Transmission Lines

- Transmission Lines
- Transmission Line

Equations

- Solution to Transmission

Line Equations

- Forward Wave
- Forward + Backward

Waves

- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line

Characteristics

- Summary

Define $f_{x}(t)=f\left(t-\frac{x}{u}\right)$ and $g_{x}(t)=g\left(t+\frac{x}{u}\right)$ to be the forward and backward waveforms at any point, x.

Then $\quad v_{x}(t)=f_{x}(t)+g_{x}(t) \quad$ and $\quad i_{x}(t)=Z_{0}^{-1}\left(f_{x}(t)-g_{x}(t)\right)$.
Note: Knowing the waveform $f_{x}(t)$ or $g_{x}(t)$ at any position x, tells you it at all other positions: $f_{y}(t)=f_{x}\left(t-\frac{y-x}{u}\right)$ and $g_{y}(t)=g_{x}\left(t+\frac{y-x}{u}\right)$.

Power Flow

The power transferred into the shaded region across the boundary at x is

$$
P_{x}(t)=v_{x}(t) i_{x}(t)=Z_{0}^{-1}\left(f_{x}(t)+g_{x}(t)\right)\left(f_{x}(t)-g_{x}(t)\right)
$$

Power Flow

17: Transmission Lines

- Transmission Lines
- Transmission Line

Equations

- Solution to Transmission

Line Equations

- Forward Wave
- Forward + Backward

Waves

- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line

Characteristics

- Summary

Define $f_{x}(t)=f\left(t-\frac{x}{u}\right)$ and $g_{x}(t)=g\left(t+\frac{x}{u}\right)$ to be the forward and backward waveforms at any point, x.

Then $\quad v_{x}(t)=f_{x}(t)+g_{x}(t) \quad$ and $\quad i_{x}(t)=Z_{0}^{-1}\left(f_{x}(t)-g_{x}(t)\right)$.
Note: Knowing the waveform $f_{x}(t)$ or $g_{x}(t)$ at any position x, tells you it at all other positions: $f_{y}(t)=f_{x}\left(t-\frac{y-x}{u}\right)$ and $g_{y}(t)=g_{x}\left(t+\frac{y-x}{u}\right)$.

Power Flow

The power transferred into the shaded region across the boundary at x is

$$
\begin{aligned}
P_{x}(t) & =v_{x}(t) i_{x}(t)=Z_{0}^{-1}\left(f_{x}(t)+g_{x}(t)\right)\left(f_{x}(t)-g_{x}(t)\right) \\
& =\frac{f_{x}^{2}(t)}{Z_{0}}-\frac{g_{x}^{2}(t)}{Z_{0}}
\end{aligned}
$$

Power Flow

17: Transmission Lines

- Transmission Lines
- Transmission Line

Equations

- Solution to Transmission

Line Equations

- Forward Wave
- Forward + Backward

Waves

- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line

Characteristics

- Summary

Define $f_{x}(t)=f\left(t-\frac{x}{u}\right)$ and $g_{x}(t)=g\left(t+\frac{x}{u}\right)$ to be the forward and backward waveforms at any point, x.

Then $\quad v_{x}(t)=f_{x}(t)+g_{x}(t) \quad$ and $\quad i_{x}(t)=Z_{0}^{-1}\left(f_{x}(t)-g_{x}(t)\right)$.
Note: Knowing the waveform $f_{x}(t)$ or $g_{x}(t)$ at any position x, tells you it at all other positions: $f_{y}(t)=f_{x}\left(t-\frac{y-x}{u}\right)$ and $g_{y}(t)=g_{x}\left(t+\frac{y-x}{u}\right)$.

Power Flow

The power transferred into the shaded region across the boundary at x is

$$
\begin{aligned}
P_{x}(t) & =v_{x}(t) i_{x}(t)=Z_{0}^{-1}\left(f_{x}(t)+g_{x}(t)\right)\left(f_{x}(t)-g_{x}(t)\right) \\
& =\frac{f_{x}^{2}(t)}{Z_{0}}-\frac{g_{x}^{2}(t)}{Z_{0}}
\end{aligned}
$$

f_{x} carries power into shaded area and g_{x} carries power out independently.

Power Flow

17: Transmission Lines

- Transmission Lines
- Transmission Line

Equations

- Solution to Transmission

Line Equations

- Forward Wave
- Forward + Backward

Waves

- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line

Characteristics

- Summary

Define $f_{x}(t)=f\left(t-\frac{x}{u}\right)$ and $g_{x}(t)=g\left(t+\frac{x}{u}\right)$ to be the forward and backward waveforms at any point, x.

$$
\begin{aligned}
& i \text { is always } \\
& \text { measured in the } \\
& + \text { ve } x \text { direction. }
\end{aligned}
$$

Then $\quad v_{x}(t)=f_{x}(t)+g_{x}(t) \quad$ and $\quad i_{x}(t)=Z_{0}^{-1}\left(f_{x}(t)-g_{x}(t)\right)$.
Note: Knowing the waveform $f_{x}(t)$ or $g_{x}(t)$ at any position x, tells you it at all other positions: $f_{y}(t)=f_{x}\left(t-\frac{y-x}{u}\right)$ and $g_{y}(t)=g_{x}\left(t+\frac{y-x}{u}\right)$.

Power Flow

The power transferred into the shaded region across the boundary at x is

$$
\begin{aligned}
P_{x}(t) & =v_{x}(t) i_{x}(t)=Z_{0}^{-1}\left(f_{x}(t)+g_{x}(t)\right)\left(f_{x}(t)-g_{x}(t)\right) \\
& =\frac{f_{x}^{2}(t)}{Z_{0}}-\frac{g_{x}^{2}(t)}{Z_{0}}
\end{aligned}
$$

f_{x} carries power into shaded area and g_{x} carries power out independently.
Power travels in the same direction as the wave.

Power Flow

17: Transmission Lines

- Transmission Lines
- Transmission Line

Equations

- Solution to Transmission

Line Equations

- Forward Wave
- Forward + Backward

Waves

- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line

Characteristics

- Summary

Define $f_{x}(t)=f\left(t-\frac{x}{u}\right)$ and $g_{x}(t)=g\left(t+\frac{x}{u}\right)$ to be the forward and backward waveforms at any point, x.

$$
\begin{aligned}
& i \text { is always } \\
& \text { measured in the } \\
& + \text { ve } x \text { direction. }
\end{aligned}
$$

Then $\quad v_{x}(t)=f_{x}(t)+g_{x}(t) \quad$ and $\quad i_{x}(t)=Z_{0}^{-1}\left(f_{x}(t)-g_{x}(t)\right)$.
Note: Knowing the waveform $f_{x}(t)$ or $g_{x}(t)$ at any position x, tells you it at all other positions: $f_{y}(t)=f_{x}\left(t-\frac{y-x}{u}\right)$ and $g_{y}(t)=g_{x}\left(t+\frac{y-x}{u}\right)$.

Power Flow

The power transferred into the shaded region across the boundary at x is

$$
\begin{aligned}
P_{x}(t) & =v_{x}(t) i_{x}(t)=Z_{0}^{-1}\left(f_{x}(t)+g_{x}(t)\right)\left(f_{x}(t)-g_{x}(t)\right) \\
& =\frac{f_{x}^{2}(t)}{Z_{0}}-\frac{g_{x}^{2}(t)}{Z_{0}}
\end{aligned}
$$

f_{x} carries power into shaded area and g_{x} carries power out independently.
Power travels in the same direction as the wave.
The same power as would be absorbed by a [ficticious] resistor of value Z_{0}.

Reflections

17: Transmission Lines

- Transmission Lines
- Transmission Line

Equations

- Solution to Transmission

Line Equations

- Forward Wave
- Forward + Backward

Waves

- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line

Characteristics

- Summary

From Ohm's law at $x=L$, we have $v_{L}(t)=i_{L}(t) R_{L}$

Reflections

17: Transmission Lines

- Transmission Lines
- Transmission Line

Equations

- Solution to Transmission

Line Equations

- Forward Wave
- Forward + Backward

Waves

- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line

Characteristics

- Summary

From Ohm's law at $x=L$, we have $v_{L}(t)=i_{L}(t) R_{L}$ Hence $\left(f_{L}(t)+g_{L}(t)\right)=Z_{0}^{-1}\left(f_{L}(t)-g_{L}(t)\right) R_{L}$

Reflections

17: Transmission Lines

- Transmission Lines
- Transmission Line

Equations

- Solution to Transmission

Line Equations

- Forward Wave
- Forward + Backward

Waves

- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line

Characteristics

- Summary

From Ohm's law at $x=L$, we have $v_{L}(t)=i_{L}(t) R_{L}$ Hence $\left(f_{L}(t)+g_{L}(t)\right)=Z_{0}^{-1}\left(f_{L}(t)-g_{L}(t)\right) R_{L}$ From this: $g_{L}(t)=\frac{R_{L}-Z_{0}}{R_{L}+Z_{0}} \times f_{L}(t)$

Reflections

17: Transmission Lines

- Transmission Lines
- Transmission Line

Equations

- Solution to Transmission

Line Equations

- Forward Wave
- Forward + Backward

Waves

- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line

Characteristics

- Summary

From Ohm's law at $x=L$, we have $v_{L}(t)=i_{L}(t) R_{L}$ Hence $\left(f_{L}(t)+g_{L}(t)\right)=Z_{0}^{-1}\left(f_{L}(t)-g_{L}(t)\right) R_{L}$
From this: $g_{L}(t)=\frac{R_{L}-Z_{0}}{R_{L}+Z_{0}} \times f_{L}(t)$
We define the reflection coefficient: $\rho_{L}=\frac{g_{L}(t)}{f_{L}(t)}=\frac{R_{L}-Z_{0}}{R_{L}+Z_{0}}=+0.5$

Reflections

17: Transmission Lines

- Transmission Lines
- Transmission Line

Equations

- Solution to Transmission

Line Equations

- Forward Wave
- Forward + Backward

Waves

- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line

Characteristics

- Summary

From Ohm's law at $x=L$, we have $v_{L}(t)=i_{L}(t) R_{L}$ Hence $\left(f_{L}(t)+g_{L}(t)\right)=Z_{0}^{-1}\left(f_{L}(t)-g_{L}(t)\right) R_{L}$
From this: $g_{L}(t)=\frac{R_{L}-Z_{0}}{R_{L}+Z_{0}} \times f_{L}(t)$
We define the reflection coefficient: $\rho_{L}=\frac{g_{L}(t)}{f_{L}(t)}=\frac{R_{L}-Z_{0}}{R_{L}+Z_{0}}=+0.5$
Substituting $g_{L}(t)=\rho_{L} f_{L}(t)$ gives

$$
v_{L}(t)=\left(1+\rho_{L}\right) f_{L}(t) \text { and } i_{L}(t)=\left(1-\rho_{L}\right) Z_{0}^{-1} f_{L}(t)
$$

Reflections

17: Transmission Lines

- Transmission Lines
- Transmission Line

Equations

- Solution to Transmission

Line Equations

- Forward Wave
- Forward + Backward

Waves

- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line

Characteristics

- Summary

From Ohm's law at $x=L$, we have $v_{L}(t)=i_{L}(t) R_{L}$ Hence $\left(f_{L}(t)+g_{L}(t)\right)=Z_{0}^{-1}\left(f_{L}(t)-g_{L}(t)\right) R_{L}$
From this: $g_{L}(t)=\frac{R_{L}-Z_{0}}{R_{L}+Z_{0}} \times f_{L}(t)$
We define the reflection coefficient: $\rho_{L}=\frac{g_{L}(t)}{f_{L}(t)}=\frac{R_{L}-Z_{0}}{R_{L}+Z_{0}}=+0.5$
Substituting $g_{L}(t)=\rho_{L} f_{L}(t)$ gives

$$
v_{L}(t)=\left(1+\rho_{L}\right) f_{L}(t) \text { and } i_{L}(t)=\left(1-\rho_{L}\right) Z_{0}^{-1} f_{L}(t)
$$

At source end: $\quad g_{0}(t)=\rho_{L} f_{0}\left(t-\frac{2 L}{u}\right)$ i.e. delayed by $\frac{2 L}{u}=12$ ns.

Reflections

17: Transmission Lines

- Transmission Lines
- Transmission Line

Equations

- Solution to Transmission

Line Equations

- Forward Wave
- Forward + Backward

Waves

- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line

Characteristics

- Summary

From Ohm's law at $x=L$, we have $v_{L}(t)=i_{L}(t) R_{L}$ Hence $\left(f_{L}(t)+g_{L}(t)\right)=Z_{0}^{-1}\left(f_{L}(t)-g_{L}(t)\right) R_{L}$
From this: $g_{L}(t)=\frac{R_{L}-Z_{0}}{R_{L}+Z_{0}} \times f_{L}(t)$
We define the reflection coefficient: $\rho_{L}=\frac{g_{L}(t)}{f_{L}(t)}=\frac{R_{L}-Z_{0}}{R_{L}+Z_{0}}=+0.5$
Substituting $g_{L}(t)=\rho_{L} f_{L}(t)$ gives

$$
v_{L}(t)=\left(1+\rho_{L}\right) f_{L}(t) \text { and } i_{L}(t)=\left(1-\rho_{L}\right) Z_{0}^{-1} f_{L}(t)
$$

At source end: $g_{0}(t)=\rho_{L} f_{0}\left(t-\frac{2 L}{u}\right)$ i.e. delayed by $\frac{2 L}{u}=12$ ns. Note that the reflected current has been multiplied by $-\rho$.

Reflection Coefficients

17: Transmission Lines

- Transmission Lines
- Transmission Line

Equations

- Solution to Transmission

Line Equations

- Forward Wave
- Forward + Backward

Waves

$$
\rho=\frac{R-Z_{0}}{R+Z_{0}}=\frac{\frac{R}{Z_{0}}-1}{\frac{R}{Z_{0}}+1}
$$

- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line

Characteristics

- Summary
ρ depends on the ratio $\frac{R}{Z_{0}}$.

$\frac{R}{Z_{0}}$	ρ	$\frac{v_{L}(t)}{f(t)}$	$\frac{i_{L}(t) Z_{0}}{f(t)}$	Comment
3	+0.5			

Reflection Coefficients

17: Transmission Lines

- Transmission Lines
- Transmission Line

Equations

- Solution to Transmission

Line Equations

- Forward Wave
- Forward + Backward

Waves

- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line

Characteristics

- Summary

$$
\begin{aligned}
& \rho=\frac{R-Z_{0}}{R+Z_{0}}=\frac{\frac{R}{Z_{0}}-1}{\frac{R}{Z_{0}}+1} \\
& \frac{v_{L}(t)}{f(t)}=1+\rho
\end{aligned}
$$

ρ depends on the ratio $\frac{R}{Z_{0}}$.

$\frac{R}{Z_{0}}$	ρ	$\frac{v_{L}(t)}{f(t)}$	$\frac{i_{L}(t) Z_{0}}{f(t)}$	Comment
3	+0.5	1.5		

Reflection Coefficients

17: Transmission Lines

- Transmission Lines
- Transmission Line

Equations

- Solution to Transmission

Line Equations

- Forward Wave
- Forward + Backward

Waves

- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line

Characteristics

- Summary

$$
\begin{aligned}
& \rho=\frac{R-Z_{0}}{R+Z_{0}}=\frac{\frac{R}{Z_{0}}-1}{\frac{R}{Z_{0}}+1} \\
& \frac{v_{L}(t)}{f(t)}=1+\rho \\
& \frac{i_{L}(t) Z_{0}}{f(t)}=1-\rho
\end{aligned}
$$

ρ depends on the ratio $\frac{R}{Z_{0}}$.

$\frac{R}{Z_{0}}$	ρ	$\frac{v_{L}(t)}{f(t)}$	$\frac{i_{L}(t) Z_{0}}{f(t)}$	Comment
3	+0.5	1.5	0.5	

Reflection Coefficients

17: Transmission Lines

- Transmission Lines
- Transmission Line

Equations

- Solution to Transmission

Line Equations

- Forward Wave
- Forward + Backward

Waves

- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line

Characteristics

- Summary

$$
\begin{aligned}
& \rho=\frac{R-Z_{0}}{R+Z_{0}}=\frac{\frac{R}{Z_{0}}-1}{\frac{R}{Z_{0}}+1} \\
& \frac{v_{L}(t)}{f(t)}=1+\rho \\
& \frac{i_{L}(t) Z_{0}}{f(t)}=1-\rho
\end{aligned}
$$

ρ depends on the ratio $\frac{R}{Z_{0}}$.

$\frac{R}{Z_{0}}$	ρ	$\frac{v_{L}(t)}{f(t)}$	$\frac{i_{L}(t) Z_{0}}{f(t)}$	Comment
3	+0.5	1.5	0.5	$R>Z_{0} \Rightarrow \rho>0$

Reflection Coefficients

17: Transmission Lines

- Transmission Lines
- Transmission Line

Equations

- Solution to Transmission

Line Equations

- Forward Wave
- Forward + Backward

Waves

- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line

Characteristics

- Summary

$$
\begin{aligned}
& \rho=\frac{R-Z_{0}}{R+Z_{0}}=\frac{\frac{R}{Z_{0}}-1}{\frac{R}{Z_{0}}+1} \\
& \frac{v_{L}(t)}{f(t)}=1+\rho \\
& \frac{i_{L}(t) Z_{0}}{f(t)}=1-\rho
\end{aligned}
$$

ρ depends on the ratio $\frac{R}{Z_{0}}$.

$\frac{R}{Z_{0}}$	ρ	$\frac{v_{L}(t)}{f(t)}$	$\frac{i_{L}(t) Z_{0}}{f(t)}$	Comment
3	+0.5	1.5	0.5	$R>Z_{0} \Rightarrow \rho>0$
$\frac{1}{3}$	-0.5	0.5	1.5	$R<Z_{0} \Rightarrow \rho<0$

Reflection Coefficients

17: Transmission Lines

- Transmission Lines
- Transmission Line

Equations

- Solution to Transmission

Line Equations

- Forward Wave
- Forward + Backward

Waves

- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line

Characteristics

- Summary

$$
\begin{aligned}
& \rho=\frac{R-Z_{0}}{R+Z_{0}}=\frac{\frac{R}{Z_{0}}-1}{\frac{R}{Z_{0}}+1} \\
& \frac{v_{L}(t)}{f(t)}=1+\rho \\
& \frac{i_{L}(t) Z_{0}}{f(t)}=1-\rho
\end{aligned}
$$

ρ depends on the ratio $\frac{R}{Z_{0}}$.

$\frac{R}{Z_{0}}$	ρ	$\frac{v_{L}(t)}{f(t)}$	$\frac{i_{L}(t) Z_{0}}{f(t)}$	Comment
3	+0.5	1.5	0.5	$R>Z_{0} \Rightarrow \rho>0$
1	0	1	1	Matched: No reflection at all
$\frac{1}{3}$	-0.5	0.5	1.5	$R<Z_{0} \Rightarrow \rho<0$

Reflection Coefficients

17: Transmission Lines

- Transmission Lines
- Transmission Line

Equations

- Solution to Transmission

Line Equations

- Forward Wave
- Forward + Backward

Waves

- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line

Characteristics

- Summary

$$
\begin{aligned}
& \rho=\frac{R-Z_{0}}{R+Z_{0}}=\frac{\frac{R}{Z_{0}}-1}{\frac{R}{Z_{0}}+1} \\
& \frac{v_{L}(t)}{f(t)}=1+\rho \\
& \frac{i_{L}(t) Z_{0}}{f(t)}=1-\rho
\end{aligned}
$$

ρ depends on the ratio $\frac{R}{Z_{0}}$.

$\frac{R}{Z_{0}}$	ρ	$\frac{v_{L}(t)}{f(t)}$	$\frac{i_{L}(t) Z_{0}}{f(t)}$	Comment
∞	+1	2	0	Open circuit: $v_{L}=2 f, i_{L} \equiv 0$
3	+0.5	1.5	0.5	$R>Z_{0} \Rightarrow \rho>0$
1	0	1	1	Matched: No reflection at all

$$
R<Z_{0} \Rightarrow \rho<0
$$

Reflection Coefficients

17: Transmission Lines

- Transmission Lines
- Transmission Line

Equations

- Solution to Transmission

Line Equations

- Forward Wave
- Forward + Backward

Waves

- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line

Characteristics

- Summary

$$
\begin{aligned}
& \rho=\frac{R-Z_{0}}{R+Z_{0}}=\frac{\frac{R}{Z_{0}}-1}{\frac{R}{Z_{0}}+1} \\
& \frac{v_{L}(t)}{f(t)}=1+\rho \\
& \frac{i_{L}(t) Z_{0}}{f(t)}=1-\rho
\end{aligned}
$$

ρ depends on the ratio $\frac{R}{Z_{0}}$.

$\frac{R}{Z_{0}}$	ρ	$\frac{v_{L}(t)}{f(t)}$	$\frac{i_{L}(t) Z_{0}}{f(t)}$	Comment
∞	+1	2	0	Open circuit: $v_{L}=2 f, i_{L} \equiv 0$
3	+0.5	1.5	0.5	$R>Z_{0} \Rightarrow \rho>0$
1	0	1	1	Matched: No reflection at all
$\frac{1}{3}$	-0.5	0.5	1.5	$R<Z_{0} \Rightarrow \rho<0$
0	-1	0	2	Short circuit: $v_{L} \equiv 0, i_{L}=\frac{2 f}{Z_{0}}$

Reflection Coefficients

17: Transmission Lines

- Transmission Lines
- Transmission Line

Equations

- Solution to Transmission

Line Equations

- Forward Wave
- Forward + Backward

Waves

- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line

Characteristics

- Summary

$$
\begin{aligned}
& \rho=\frac{R-Z_{0}}{R+Z_{0}}=\frac{\frac{R}{Z_{0}}-1}{\frac{R}{Z_{0}}+1} \\
& \frac{v_{L}(t)}{f(t)}=1+\rho \\
& \frac{i_{L}(t) Z_{0}}{f(t)}=1-\rho
\end{aligned}
$$

ρ depends on the ratio $\frac{R}{Z_{0}}$.

$\frac{R}{Z_{0}}$	ρ	$\frac{v_{L}(t)}{f(t)}$	$\frac{i_{L}(t) Z_{0}}{f(t)}$	Comment
∞	+1	2	0	Open circuit: $v_{L}=2 f, i_{L} \equiv 0$
3	+0.5	1.5	0.5	$R>Z_{0} \Rightarrow \rho>0$
1	0	1	1	Matched: No reflection at all
$\frac{1}{3}$	-0.5	0.5	1.5	$R<Z_{0} \Rightarrow \rho<0$
0	-1	0	2	Short circuit: $v_{L} \equiv 0, i_{L}=\frac{2 f}{Z_{0}}$

Note: Reverse mapping is $R=\frac{v_{L}}{i_{L}}=\frac{1+\rho}{1-\rho} \times Z_{0}$

Reflection Coefficients

17: Transmission Lines

- Transmission Lines
- Transmission Line

Equations

- Solution to Transmission

Line Equations

- Forward Wave
- Forward + Backward

Waves

- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line

Characteristics

- Summary
$\rho=\frac{R-Z_{0}}{R+Z_{0}}=\frac{\frac{R}{Z_{0}}-1}{\frac{R}{Z_{0}}+1}$
$\frac{v_{L}(t)}{f(t)}=1+\rho$
$\frac{i_{L}(t) Z_{0}}{f(t)}=1-\rho$
ρ depends on the ratio $\frac{R}{Z_{0}}$.

$\frac{R}{Z_{0}}$	ρ	$\frac{v_{L}(t)}{f(t)}$	$\frac{i_{L}(t) Z_{0}}{f(t)}$	Comment
∞	+1	2	0	Open circuit: $v_{L}=2 f, i_{L} \equiv 0$
3	+0.5	1.5	0.5	$R>Z_{0} \Rightarrow \rho>0$
1	0	1	1	Matched: No reflection at all
$\frac{1}{3}$	-0.5	0.5	1.5	$R<Z_{0} \Rightarrow \rho<0$
0	-1	0	2	Short circuit: $v_{L} \equiv 0, i_{L}=\frac{2 f}{Z_{0}}$

Note: Reverse mapping is $R=\frac{v_{L}}{i_{L}}=\frac{1+\rho}{1-\rho} \times Z_{0}$
Remember: $\rho \in\{-1,+1\}$ and increases with R.

Driving a line

17: Transmission Lines

- Transmission Lines
- Transmission Line

Equations

- Solution to Transmission

Line Equations

- Forward Wave
- Forward + Backward

Waves

- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line

Characteristics

- Summary

From Ohm's law at $x=0$, we have $v_{0}(t)=v_{S}(t)-i_{0}(t) R_{S}$ where R_{S} is the Thévenin resistance of the voltage source.

Driving a line

From Ohm's law at $x=0$, we have $v_{0}(t)=v_{S}(t)-i_{0}(t) R_{S}$ where R_{S} is the Thévenin resistance of the voltage source.

Substituting $v_{0}(t)=f_{0}+g_{0}$ and $i_{0}(t)=\frac{f_{0}-g_{0}}{Z_{0}}$ leads to:

$$
f_{0}(t)=\frac{Z_{0}}{R_{S}+Z_{0}} v_{S}(t)+\frac{R_{S}-Z_{0}}{R_{S}+Z_{0}} g_{0}(t)
$$

Driving a line

From Ohm's law at $x=0$, we have $v_{0}(t)=v_{S}(t)-i_{0}(t) R_{S}$ where R_{S} is the Thévenin resistance of the voltage source.

Substituting $v_{0}(t)=f_{0}+g_{0}$ and $i_{0}(t)=\frac{f_{0}-g_{0}}{Z_{0}}$ leads to:

$$
f_{0}(t)=\frac{Z_{0}}{R_{S}+Z_{0}} v_{S}(t)+\frac{R_{S}-Z_{0}}{R_{S}+Z_{0}} g_{0}(t) \triangleq \tau_{0} v_{S}(t)+\rho_{0} g_{0}(t)
$$

Driving a line

17: Transmission Lines

- Transmission Lines
- Transmission Line

Equations

- Solution to Transmission

Line Equations

- Forward Wave
- Forward + Backward

Waves

- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line

Characteristics

- Summary

From Ohm's law at $x=0$, we have $v_{0}(t)=v_{S}(t)-i_{0}(t) R_{S}$ where R_{S} is the Thévenin resistance of the voltage source.

Substituting $v_{0}(t)=f_{0}+g_{0}$ and $i_{0}(t)=\frac{f_{0}-g_{0}}{Z_{0}}$ leads to:

$$
f_{0}(t)=\frac{Z_{0}}{R_{S}+Z_{0}} v_{S}(t)+\frac{R_{S}-Z_{0}}{R_{S}+Z_{0}} g_{0}(t) \triangleq \tau_{0} v_{S}(t)+\rho_{0} g_{0}(t)
$$

So $f_{0}(t)$ is the superposition of two terms:
(1) Input $v_{S}(t)$ multiplied by $\tau_{0}=\frac{Z_{0}}{R_{S}+Z_{0}}$ which is the same as a potential divider if you replace the line with a [ficticious] resistor Z_{0}.

Driving a line

- Forward Wave
- Forward + Backward

Waves

- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line

Characteristics

- Summary

From Ohm's law at $x=0$, we have $v_{0}(t)=v_{S}(t)-i_{0}(t) R_{S}$ where R_{S} is the Thévenin resistance of the voltage source.

Substituting $v_{0}(t)=f_{0}+g_{0}$ and $i_{0}(t)=\frac{f_{0}-g_{0}}{Z_{0}}$ leads to:

$$
f_{0}(t)=\frac{Z_{0}}{R_{S}+Z_{0}} v_{S}(t)+\frac{R_{S}-Z_{0}}{R_{S}+Z_{0}} g_{0}(t) \triangleq \tau_{0} v_{S}(t)+\rho_{0} g_{0}(t)
$$

So $f_{0}(t)$ is the superposition of two terms:
(1) Input $v_{S}(t)$ multiplied by $\tau_{0}=\frac{Z_{0}}{R_{S}+Z_{0}}$ which is the same as a potential divider if you replace the line with a [ficticious] resistor Z_{0}.
(2) The incoming backward wave, $g_{0}(t)$, multiplied by a reflection coefficient: $\rho_{0}=\frac{R_{S}-Z_{0}}{R_{S}+Z_{0}}$.

Driving a line

- Forward Wave
- Forward + Backward

Waves

- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line

Characteristics

- Summary

From Ohm's law at $x=0$, we have $v_{0}(t)=v_{S}(t)-i_{0}(t) R_{S}$ where R_{S} is the Thévenin resistance of the voltage source.
Substituting $v_{0}(t)=f_{0}+g_{0}$ and $i_{0}(t)=\frac{f_{0}-g_{0}}{Z_{0}}$ leads to:

$$
f_{0}(t)=\frac{Z_{0}}{R_{S}+Z_{0}} v_{S}(t)+\frac{R_{S}-Z_{0}}{R_{S}+Z_{0}} g_{0}(t) \triangleq \tau_{0} v_{S}(t)+\rho_{0} g_{0}(t)
$$

So $f_{0}(t)$ is the superposition of two terms:
(1) Input $v_{S}(t)$ multiplied by $\tau_{0}=\frac{Z_{0}}{R_{S}+Z_{0}}$ which is the same as a potential divider if you replace the line with a [ficticious] resistor Z_{0}.
(2) The incoming backward wave, $g_{0}(t)$, multiplied by a reflection coefficient: $\rho_{0}=\frac{R_{S}-Z_{0}}{R_{S}+Z_{0}}$.

For $R_{S}=20: \tau_{0}=\frac{100}{20+100}=0.83 \quad$ and $\quad \rho_{0}=\frac{20-100}{20+100}=-0.67$.

Multiple Reflections

17: Transmission Lines

- Transmission Lines
- Transmission Line

Equations

- Solution to Transmission

Line Equations

- Forward Wave
- Forward + Backward

Waves

- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line

Characteristics

- Summary

$$
\begin{aligned}
& \rho_{0}=-\frac{2}{3} \\
& \rho_{L}=\frac{1}{2} \\
& v_{x}=f_{x}+g_{x}
\end{aligned}
$$

Multiple Reflections

17: Transmission Lines

- Transmission Lines
- Transmission Line

Equations

- Solution to Transmission

Line Equations

- Forward Wave
- Forward + Backward

Waves

- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line

Characteristics

- Summary

$$
\begin{aligned}
& \rho_{0}=-\frac{2}{3} \\
& \rho_{L}=\frac{1}{2} \\
& v_{x}=f_{x}+g_{x}
\end{aligned}
$$

Multiple Reflections

17: Transmission Lines

- Transmission Lines
- Transmission Line

Equations

- Solution to Transmission

Line Equations

- Forward Wave
- Forward + Backward

Waves

- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line

Characteristics

- Summary

$$
\begin{aligned}
& \rho_{0}=-\frac{2}{3} \\
& \rho_{L}=\frac{1}{2} \\
& v_{x}=f_{x}+g_{x}
\end{aligned}
$$

Multiple Reflections

17: Transmission Lines

- Transmission Lines
- Transmission Line

Equations

- Solution to Transmission

Line Equations

- Forward Wave
- Forward + Backward

Waves

- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line

Characteristics

- Summary

$$
\begin{aligned}
& \rho_{0}=-\frac{2}{3} \\
& \rho_{L}=\frac{1}{2} \\
& v_{x}=f_{x}+g_{x}
\end{aligned}
$$

Multiple Reflections

17: Transmission Lines

- Transmission Lines
- Transmission Line

Equations

- Solution to Transmission

Line Equations

- Forward Wave
- Forward + Backward

Waves

- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line

Characteristics

- Summary

$$
\begin{aligned}
& \rho_{0}=-\frac{2}{3} \\
& \rho_{L}=\frac{1}{2} \\
& v_{x}=f_{x}+g_{x}
\end{aligned}
$$

Multiple Reflections

17: Transmission Lines

- Transmission Lines
- Transmission Line

Equations

- Solution to Transmission

Line Equations

- Forward Wave
- Forward + Backward

Waves

- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line

Characteristics

- Summary

$$
\begin{aligned}
& \rho_{0}=-\frac{2}{3} \\
& \rho_{L}=\frac{1}{2} \\
& v_{x}=f_{x}+g_{x}
\end{aligned}
$$

Multiple Reflections

17: Transmission Lines

- Transmission Lines
- Transmission Line

Equations

- Solution to Transmission

Line Equations

- Forward Wave
- Forward + Backward

Waves

- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line

Characteristics

- Summary

$$
\begin{aligned}
& \rho_{0}=-\frac{2}{3} \\
& \rho_{L}=\frac{1}{2} \\
& v_{x}=f_{x}+g_{x}
\end{aligned}
$$

Multiple Reflections

17: Transmission Lines

- Transmission Lines
- Transmission Line

Equations

- Solution to Transmission

Line Equations

- Forward Wave
- Forward + Backward

Waves

- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line

Characteristics

- Summary

$$
\begin{aligned}
& \rho_{0}=-\frac{2}{3} \\
& \rho_{L}=\frac{1}{2} \\
& v_{x}=f_{x}+g_{x}
\end{aligned}
$$

Each extra bit of f_{0} is
delayed by $\frac{2 L}{u}$ ($=12 \mathrm{~ns}$) and multiplied by $\rho_{L} \rho_{0}$:

$$
\begin{aligned}
& f_{0}(t)= \\
& \quad \sum_{i=0}^{\infty} \tau_{0} \rho_{L}^{i} \rho_{0}^{i} v_{S}\left(t-\frac{2 L i}{u}\right)
\end{aligned}
$$

Multiple Reflections

17: Transmission Lines

- Transmission Lines
- Transmission Line

Equations

- Solution to Transmission

Line Equations

- Forward Wave
- Forward + Backward

Waves

- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line

Characteristics

- Summary

$$
\begin{aligned}
& \rho_{0}=-\frac{2}{3} \\
& \rho_{L}=\frac{1}{2} \\
& v_{x}=f_{x}+g_{x}
\end{aligned}
$$

Each extra bit of f_{0} is
delayed by $\frac{2 L}{u}$ ($=12 \mathrm{~ns}$) and multiplied by $\rho_{L} \rho_{0}$:

$$
\begin{aligned}
& f_{0}(t)= \\
& \quad \sum_{i=0}^{\infty} \tau_{0} \rho_{L}^{i} \rho_{0}^{i} v_{S}\left(t-\frac{2 L i}{u}\right) \\
& g_{L}(t)=\rho_{L} f_{0}\left(t-\frac{L}{u}\right)
\end{aligned}
$$

Multiple Reflections

17: Transmission Lines

- Transmission Lines
- Transmission Line

Equations

- Solution to Transmission

Line Equations

- Forward Wave
- Forward + Backward

Waves

- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line

Characteristics

- Summary

$$
\begin{aligned}
& \rho_{0}=-\frac{2}{3} \\
& \rho_{L}=\frac{1}{2} \\
& v_{x}=f_{x}+g_{x}
\end{aligned}
$$

Each extra bit of f_{0} is
delayed by $\frac{2 L}{u}$ ($=12 \mathrm{~ns}$) and multiplied by $\rho_{L} \rho_{0}$:

$$
\begin{aligned}
& f_{0}(t)= \\
& \quad \sum_{i=0}^{\infty} \tau_{0} \rho_{L}^{i} \rho_{0}^{i} v_{S}\left(t-\frac{2 L i}{u}\right) \\
& g_{L}(t)=\rho_{L} f_{0}\left(t-\frac{L}{u}\right)
\end{aligned}
$$

$$
v_{0}(t)=
$$

$$
f_{0}(t)+g_{L}\left(t-\frac{L}{u}\right)
$$

Multiple Reflections

17: Transmission Lines

- Transmission Lines
- Transmission Line

Equations

- Solution to Transmission

Line Equations

- Forward Wave
- Forward + Backward

Waves

- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line

Characteristics

- Summary

$$
\begin{aligned}
& \rho_{0}=-\frac{2}{3} \\
& \rho_{L}=\frac{1}{2} \\
& v_{x}=f_{x}+g_{x}
\end{aligned}
$$

Each extra bit of f_{0} is
delayed by $\frac{2 L}{u}(=12 \mathrm{~ns})$ and multiplied by $\rho_{L} \rho_{0}$:

$$
\begin{aligned}
& f_{0}(t)= \\
& \quad \sum_{i=0}^{\infty} \tau_{0} \rho_{L}^{i} \rho_{0}^{i} v_{S}\left(t-\frac{2 L i}{u}\right) \\
& g_{L}(t)=\rho_{L} f_{0}\left(t-\frac{L}{u}\right)
\end{aligned}
$$

$$
v_{0}(t)=
$$

$$
f_{0}(t)+g_{L}\left(t-\frac{L}{u}\right)
$$

Multiple Reflections

17: Transmission Lines

- Transmission Lines
- Transmission Line

Equations

- Solution to Transmission

Line Equations

- Forward Wave
- Forward + Backward

Waves

- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line

Characteristics

- Summary

$$
\begin{aligned}
& \rho_{0}=-\frac{2}{3} \\
& \rho_{L}=\frac{1}{2} \\
& v_{x}=f_{x}+g_{x}
\end{aligned}
$$

Each extra bit of f_{0} is
delayed by $\frac{2 L}{u}(=12 \mathrm{~ns})$ and multiplied by $\rho_{L} \rho_{0}$:

$$
\begin{aligned}
& f_{0}(t)= \\
& \quad \sum_{i=0}^{\infty} \tau_{0} \rho_{L}^{i} \rho_{0}^{i} v_{S}\left(t-\frac{2 L i}{u}\right) \\
& g_{L}(t)=\rho_{L} f_{0}\left(t-\frac{L}{u}\right)
\end{aligned}
$$

$$
v_{0}(t)=
$$

$$
f_{0}(t)+g_{L}\left(t-\frac{L}{u}\right)
$$

Multiple Reflections

17: Transmission Lines

- Transmission Lines
- Transmission Line

Equations

- Solution to Transmission

Line Equations

- Forward Wave
- Forward + Backward

Waves

- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line

Characteristics

- Summary

$$
\begin{aligned}
& \rho_{0}=-\frac{2}{3} \\
& \rho_{L}=\frac{1}{2} \\
& v_{x}=f_{x}+g_{x}
\end{aligned}
$$

Each extra bit of f_{0} is
delayed by $\frac{2 L}{u}(=12 \mathrm{~ns})$ and multiplied by $\rho_{L} \rho_{0}$:

$$
\begin{aligned}
& f_{0}(t)= \\
& \quad \sum_{i=0}^{\infty} \tau_{0} \rho_{L}^{i} \rho_{0}^{i} v_{S}\left(t-\frac{2 L i}{u}\right) \\
& g_{L}(t)=\rho_{L} f_{0}\left(t-\frac{L}{u}\right)
\end{aligned}
$$

$$
v_{0}(t)=
$$

$$
f_{0}(t)+g_{L}\left(t-\frac{L}{u}\right)
$$

Multiple Reflections

17: Transmission Lines

- Transmission Lines
- Transmission Line

Equations

- Solution to Transmission

Line Equations

- Forward Wave
- Forward + Backward

Waves

- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line

Characteristics

- Summary

$$
\begin{aligned}
& \rho_{0}=-\frac{2}{3} \\
& \rho_{L}=\frac{1}{2} \\
& v_{x}=f_{x}+g_{x}
\end{aligned}
$$

Each extra bit of f_{0} is
delayed by $\frac{2 L}{u}(=12 \mathrm{~ns})$ and multiplied by $\rho_{L} \rho_{0}$:

$$
\begin{aligned}
& f_{0}(t)= \\
& \quad \sum_{i=0}^{\infty} \tau_{0} \rho_{L}^{i} \rho_{0}^{i} v_{S}\left(t-\frac{2 L i}{u}\right) \\
& g_{L}(t)=\rho_{L} f_{0}\left(t-\frac{L}{u}\right)
\end{aligned}
$$

$$
\begin{array}{lllllll}
g_{\mathrm{L}}(\mathrm{t}) \\
\hline 0 & 5 & 10 & 15 & 20 & 25 & \begin{array}{c}
30 \\
\text { Time (ns) } \\
\hline
\end{array} \\
\hline
\end{array}
$$

$$
v_{0}(t)=
$$

$$
f_{0}(t)+g_{L}\left(t-\frac{L}{u}\right)
$$

$$
\begin{aligned}
& v_{L}(t)= \\
& \quad f_{0}\left(t-\frac{L}{u}\right)+g_{L}(t)
\end{aligned}
$$

Multiple Reflections

17: Transmission Lines

- Transmission Lines
- Transmission Line

Equations

- Solution to Transmission

Line Equations

- Forward Wave
- Forward + Backward

Waves

- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line

Characteristics

- Summary

$$
\begin{aligned}
& \rho_{0}=-\frac{2}{3} \\
& \rho_{L}=\frac{1}{2} \\
& v_{x}=f_{x}+g_{x}
\end{aligned}
$$

Each extra bit of f_{0} is

$$
\text { delayed by } \frac{2 L}{u} \text { (=12 ns) }
$$ and multiplied by $\rho_{L} \rho_{0}$:

$f_{0}(t)=$
$\sum_{i=0}^{\infty} \tau_{0} \rho_{L}^{i} \rho_{0}^{i} v_{S}\left(t-\frac{2 L i}{u}\right)$
$g_{L}(t)=\rho_{L} f_{0}\left(t-\frac{L}{u}\right)$

$$
\begin{aligned}
& v_{0}(t)= \\
& \quad f_{0}(t)+g_{L}\left(t-\frac{L}{u}\right) \\
& v_{L}(t)= \\
& \quad f_{0}\left(t-\frac{L}{u}\right)+g_{L}(t)
\end{aligned}
$$

Multiple Reflections

17: Transmission Lines

- Transmission Lines
- Transmission Line

Equations

- Solution to Transmission

Line Equations

- Forward Wave
- Forward + Backward

Waves

- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line

Characteristics

- Summary

$$
\begin{aligned}
& \rho_{0}=-\frac{2}{3} \\
& \rho_{L}=\frac{1}{2} \\
& v_{x}=f_{x}+g_{x}
\end{aligned}
$$

Each extra bit of f_{0} is

$$
\text { delayed by } \frac{2 L}{u} \text { (=12 ns) }
$$ and multiplied by $\rho_{L} \rho_{0}$:

$f_{0}(t)=$
$\sum_{i=0}^{\infty} \tau_{0} \rho_{L}^{i} \rho_{0}^{i} v_{S}\left(t-\frac{2 L i}{u}\right)$
$g_{L}(t)=\rho_{L} f_{0}\left(t-\frac{L}{u}\right)$

$$
\begin{aligned}
& v_{0}(t)= \\
& \quad f_{0}(t)+g_{L}\left(t-\frac{L}{u}\right) \\
& v_{L}(t)= \\
& \quad f_{0}\left(t-\frac{L}{u}\right)+g_{L}(t)
\end{aligned}
$$

Multiple Reflections

17: Transmission Lines

- Transmission Lines
- Transmission Line

Equations

- Solution to Transmission

Line Equations

- Forward Wave
- Forward + Backward

Waves

- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line

Characteristics

- Summary

$$
\begin{aligned}
& \rho_{0}=-\frac{2}{3} \\
& \rho_{L}=\frac{1}{2} \\
& v_{x}=f_{x}+g_{x}
\end{aligned}
$$

Each extra bit of f_{0} is

$$
\text { delayed by } \frac{2 L}{u} \text { (=12 ns) }
$$ and multiplied by $\rho_{L} \rho_{0}$:

$f_{0}(t)=$
$\sum_{i=0}^{\infty} \tau_{0} \rho_{L}^{i} \rho_{0}^{i} v_{S}\left(t-\frac{2 L i}{u}\right)$
$g_{L}(t)=\rho_{L} f_{0}\left(t-\frac{L}{u}\right)$

Transmission Line Characteristics

17: Transmission Lines

- Transmission Lines
- Transmission Line

Equations

- Solution to Transmission

Line Equations

- Forward Wave
- Forward + Backward

Waves

- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line Characteristics
- Summary

Integrated circuits \& Printed circuit boards High speed digital or high frequency analog interconnections
$Z_{0} \approx 100 \Omega, u \approx 15 \mathrm{~cm} / \mathrm{ns}$.
Long Cables
Coaxial cable ("coax"): unaffacted by external fields; use for antennae and instrumentation.
$Z_{0}=50$ or $75 \Omega, u \approx 25 \mathrm{~cm} / \mathrm{ns}$.
Twisted Pairs: cheaper and thinner than coax and resistant to magnetic fields; use for computer network and telephone cabling. $Z_{0} \approx 100 \Omega, u \approx 19 \mathrm{~cm} / \mathrm{ns}$.

When do you have to bother?

Answer: long cables or high frequencies. You can completely ignore transmission line effects if length $\ll \frac{u}{\text { frequency }}=$ wavelength.

- Audio ($<20 \mathrm{kHz}$) never matters.
- Computers (1 GHz) usually matters.
- Radio/TV usually matters.

Summary

17: Transmission Lines

- Transmission Lines
- Transmission Line

Equations

- Solution to Transmission

Line Equations

- Forward Wave
- Forward + Backward

Waves

- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line

Characteristics

- Summary
- Signals travel at around $u \approx \frac{1}{2} c=15 \mathrm{~cm} / \mathrm{ns}$. Only matters for high frequencies or long cables.

17: Transmission Lines

- Transmission Lines
- Transmission Line

Equations

- Solution to Transmission

Line Equations

- Forward Wave
- Forward + Backward

Waves

- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line

Characteristics

- Summary
- Signals travel at around $u \approx \frac{1}{2} c=15 \mathrm{~cm} / \mathrm{ns}$. Only matters for high frequencies or long cables.
- Forward and backward waves travel along the line:

$$
f_{x}(t)=f_{0}\left(t-\frac{x}{u}\right) \quad \text { and } \quad g_{x}(t)=g_{0}\left(t+\frac{x}{u}\right)
$$

Summary

17: Transmission Lines

- Transmission Lines
- Transmission Line

Equations

- Solution to Transmission

Line Equations

- Forward Wave
- Forward + Backward

Waves

- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line

Characteristics

- Summary
- Signals travel at around $u \approx \frac{1}{2} c=15 \mathrm{~cm} / \mathrm{ns}$. Only matters for high frequencies or long cables.
- Forward and backward waves travel along the line:

$$
f_{x}(t)=f_{0}\left(t-\frac{x}{u}\right) \quad \text { and } \quad g_{x}(t)=g_{0}\left(t+\frac{x}{u}\right)
$$

- Knowing f_{x} and g_{x} at any single x position tells you everything

Summary

17: Transmission Lines

- Transmission Lines
- Transmission Line

Equations

- Solution to Transmission

Line Equations

- Forward Wave
- Forward + Backward

Waves

- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line

Characteristics

- Summary
- Signals travel at around $u \approx \frac{1}{2} c=15 \mathrm{~cm} / \mathrm{ns}$. Only matters for high frequencies or long cables.
- Forward and backward waves travel along the line:

$$
f_{x}(t)=f_{0}\left(t-\frac{x}{u}\right) \quad \text { and } \quad g_{x}(t)=g_{0}\left(t+\frac{x}{u}\right)
$$

- Knowing f_{x} and g_{x} at any single x position tells you everything
- Voltage and current are: $v_{x}=f_{x}+g_{x}$ and $i_{x}=\frac{f_{x}-g_{x}}{Z_{0}}$

Summary

17: Transmission Lines

- Transmission Lines
- Transmission Line

Equations

- Solution to Transmission

Line Equations

- Forward Wave
- Forward + Backward

Waves

- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line

Characteristics

- Summary
- Signals travel at around $u \approx \frac{1}{2} c=15 \mathrm{~cm} / \mathrm{ns}$. Only matters for high frequencies or long cables.
- Forward and backward waves travel along the line:

$$
f_{x}(t)=f_{0}\left(t-\frac{x}{u}\right) \quad \text { and } \quad g_{x}(t)=g_{0}\left(t+\frac{x}{u}\right)
$$

- Knowing f_{x} and g_{x} at any single x position tells you everything
- Voltage and current are: $v_{x}=f_{x}+g_{x}$ and $i_{x}=\frac{f_{x}-g_{x}}{Z_{0}}$
- Terminating line with R at $x=L$ links the forward and backward waves:
- backward wave is $g_{L}=\rho_{L} f_{L}$ where $\rho_{L}=\frac{R-Z_{0}}{R+Z_{0}}$

Summary

17: Transmission Lines

- Transmission Lines
- Transmission Line

Equations

- Solution to Transmission

Line Equations

- Forward Wave
- Forward + Backward

Waves

- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line

Characteristics

- Summary
- Signals travel at around $u \approx \frac{1}{2} c=15 \mathrm{~cm} / \mathrm{ns}$. Only matters for high frequencies or long cables.
- Forward and backward waves travel along the line:

$$
f_{x}(t)=f_{0}\left(t-\frac{x}{u}\right) \quad \text { and } \quad g_{x}(t)=g_{0}\left(t+\frac{x}{u}\right)
$$

- Knowing f_{x} and g_{x} at any single x position tells you everything
- Voltage and current are: $v_{x}=f_{x}+g_{x}$ and $i_{x}=\frac{f_{x}-g_{x}}{Z_{0}}$
- Terminating line with R at $x=L$ links the forward and backward waves:
- backward wave is $g_{L}=\rho_{L} f_{L}$ where $\rho_{L}=\frac{R-Z_{0}}{R+Z_{0}}$
- the reflection coefficient, $\rho_{L} \in\{-1,+1\}$ and increases with R

Summary

17: Transmission Lines

- Transmission Lines
- Transmission Line

Equations

- Solution to Transmission

Line Equations

- Forward Wave
- Forward + Backward

Waves

- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line

Characteristics

- Summary
- Signals travel at around $u \approx \frac{1}{2} c=15 \mathrm{~cm} / \mathrm{ns}$. Only matters for high frequencies or long cables.
- Forward and backward waves travel along the line:

$$
f_{x}(t)=f_{0}\left(t-\frac{x}{u}\right) \quad \text { and } \quad g_{x}(t)=g_{0}\left(t+\frac{x}{u}\right)
$$

- Knowing f_{x} and g_{x} at any single x position tells you everything
- Voltage and current are: $v_{x}=f_{x}+g_{x}$ and $i_{x}=\frac{f_{x}-g_{x}}{Z_{0}}$
- Terminating line with R at $x=L$ links the forward and backward waves:
- backward wave is $g_{L}=\rho_{L} f_{L}$ where $\rho_{L}=\frac{R-Z_{0}}{R+Z_{0}}$
- the reflection coefficient, $\rho_{L} \in\{-1,+1\}$ and increases with R
- $R=Z_{0}$ avoids reflections: matched termination.

Summary

17: Transmission Lines

- Transmission Lines
- Transmission Line

Equations

- Solution to Transmission

Line Equations

- Forward Wave
- Forward + Backward

Waves

- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line

Characteristics

- Summary
- Signals travel at around $u \approx \frac{1}{2} c=15 \mathrm{~cm} / \mathrm{ns}$. Only matters for high frequencies or long cables.
- Forward and backward waves travel along the line:

$$
f_{x}(t)=f_{0}\left(t-\frac{x}{u}\right) \quad \text { and } \quad g_{x}(t)=g_{0}\left(t+\frac{x}{u}\right)
$$

- Knowing f_{x} and g_{x} at any single x position tells you everything
- Voltage and current are: $v_{x}=f_{x}+g_{x}$ and $i_{x}=\frac{f_{x}-g_{x}}{Z_{0}}$
- Terminating line with R at $x=L$ links the forward and backward waves:
- backward wave is $g_{L}=\rho_{L} f_{L}$ where $\rho_{L}=\frac{R-Z_{0}}{R+Z_{0}}$
- the reflection coefficient, $\rho_{L} \in\{-1,+1\}$ and increases with R
- $R=Z_{0}$ avoids reflections: matched termination.
- Reflections go on for ever unless one or both ends are matched.

Summary

17: Transmission Lines

- Transmission Lines
- Transmission Line

Equations

- Solution to Transmission

Line Equations

- Forward Wave
- Forward + Backward

Waves

- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line

Characteristics

- Summary
- Signals travel at around $u \approx \frac{1}{2} c=15 \mathrm{~cm} / \mathrm{ns}$. Only matters for high frequencies or long cables.
- Forward and backward waves travel along the line:

$$
f_{x}(t)=f_{0}\left(t-\frac{x}{u}\right) \quad \text { and } \quad g_{x}(t)=g_{0}\left(t+\frac{x}{u}\right)
$$

- Knowing f_{x} and g_{x} at any single x position tells you everything
- Voltage and current are: $v_{x}=f_{x}+g_{x}$ and $i_{x}=\frac{f_{x}-g_{x}}{Z_{0}}$
- Terminating line with R at $x=L$ links the forward and backward waves:
- backward wave is $g_{L}=\rho_{L} f_{L}$ where $\rho_{L}=\frac{R-Z_{0}}{R+Z_{0}}$
- the reflection coefficient, $\rho_{L} \in\{-1,+1\}$ and increases with R
- $R=Z_{0}$ avoids reflections: matched termination.
- Reflections go on for ever unless one or both ends are matched.
- f is infinite sum of copies of the input signal delayed successively by the round-trip delay, $\frac{2 L}{u}$, and multiplied by $\rho_{L} \rho_{0}$.

