- Transmission Lines
- Transmission Line
- Equations
- Solution to Transmission Line Equations
- Forward Wave
- Forward + Backward

Waves

- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line
- Characteristics
- Summary

17: Transmission Lines

17: Transmission Lines

- Transmission Lines
- Transmission Line
- Equations
- Solution to Transmission Line Equations
- Forward Wave
- Forward + Backward Waves
- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line
- Characteristics
- Summary

Previously assume that any change in $v_0(t)$ appears instantly at $v_L(t)$.

17: Transmission Lines

- Transmission Lines
- Transmission Line
- Equations
- Solution to Transmission Line Equations
- Forward Wave
- Forward + Backward Waves
- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line
- Characteristics
- Summary

Previously assume that any change in $v_0(t)$ appears instantly at $v_L(t)$.

This is not true.

17: Transmission Lines

- Transmission Lines
- Transmission Line
- Equations
- Solution to Transmission Line Equations
- Forward Wave
- Forward + Backward Waves
- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line
- Characteristics
- Summary

Previously assume that any change in $v_0(t)$ appears instantly at $v_L(t)$.

This is not true.

If fact signals travel at around half the speed of light (c = 30 cm/ns).

17: Transmission Lines

- Transmission Lines
- Transmission Line
- Equations
- Solution to Transmission Line Equations
- Forward Wave
- Forward + Backward Waves
- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line
- Characteristics
- Summary

Previously assume that any change in $v_0(t)$ appears instantly at $v_L(t)$.

This is not true.

If fact signals travel at around half the speed of light (c = 30 cm/ns).

Reason: all wires have capacitance to ground and to neighbouring conductors and also self-inductance. It takes time to change the current through an inductor or voltage across a capacitor.

17: Transmission Lines

- Transmission Lines
- Transmission Line
- Equations
- Solution to Transmission Line Equations
- Forward Wave
- Forward + Backward Waves
- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line
- Characteristics
- Summary

Previously assume that any change in $v_0(t)$ appears instantly at $v_L(t)$.

This is not true.

If fact signals travel at around half the speed of light (c = 30 cm/ns).

Reason: all wires have capacitance to ground and to neighbouring conductors and also self-inductance. It takes time to change the current through an inductor or voltage across a capacitor.

A *transmission line* is a wire with a uniform goemetry along its length: the capacitance and inductance of any segment is proportional to its length.

17: Transmission Lines

- Transmission Lines
- Transmission Line
- Equations

• Solution to Transmission Line Equations

- Forward Wave
- Forward + Backward Waves
- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line
- Characteristics
- Summary

Previously assume that any change in $v_0(t)$ appears instantly at $v_L(t)$.

This is not true.

If fact signals travel at around half the speed of light (c = 30 cm/ns).

Reason: all wires have capacitance to ground and to neighbouring conductors and also self-inductance. It takes time to change the current through an inductor or voltage across a capacitor.

A *transmission line* is a wire with a uniform goemetry along its length: the capacitance and inductance of any segment is proportional to its length. We represent as a large number of small inductors and capacitors spaced along the line.

17: Transmission Lines

- Transmission Lines
- Transmission Line
- Equations

• Solution to Transmission Line Equations

- Forward Wave
- Forward + Backward Waves
- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line
- Characteristics
- Summary

Previously assume that any change in $v_0(t)$ appears instantly at $v_L(t)$.

This is not true.

If fact signals travel at around half the speed of light (c = 30 cm/ns).

Reason: all wires have capacitance to ground and to neighbouring conductors and also self-inductance. It takes time to change the current through an inductor or voltage across a capacitor.

A *transmission line* is a wire with a uniform goemetry along its length: the capacitance and inductance of any segment is proportional to its length. We represent as a large number of small inductors and capacitors spaced along the line.

The signal speed along a transmisison line is predictable.

17: Transmission Lines

- Transmission Lines
- Transmission Line
- Equations

• Solution to Transmission Line Equations

- Forward Wave
- Forward + Backward Waves
- -
- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line
- Characteristics
- Summary

A short section of line δx long:

v(x,t) and i(x,t) depend on both position and time.

17: Transmission Lines

- Transmission Lines
- Transmission Line
- Equations

• Solution to Transmission Line Equations

- Forward Wave
- Forward + Backward Waves
- vvaves
- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line
- Characteristics
- Summary

A short section of line δx long:

v(x,t) and i(x,t) depend on both position and time.

Small $\delta x \Rightarrow$ ignore 2nd order derivatives:

$$\frac{\partial v(x,t)}{\partial t} = \frac{\partial v(x+\delta x,t)}{\partial t} \stackrel{\Delta}{=} \frac{\partial v}{\partial t}.$$

17: Transmission Lines

- Transmission Lines
- Transmission Line
- Equations

• Solution to Transmission Line Equations

- Forward Wave
- Forward + Backward Waves
- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line
- Characteristics
- Summary

A short section of line δx long:

v(x,t) and i(x,t) depend on both position and time.

Small $\delta x \Rightarrow$ ignore 2nd order derivatives:

$$\frac{\partial v(x,t)}{\partial t} = \frac{\partial v(x+\delta x,t)}{\partial t} \stackrel{\Delta}{=} \frac{\partial v}{\partial t}.$$

Basic Equations

$$\begin{array}{ll} \mbox{VL:} & v(x,t) = V_2 + v(x+\delta x,t) + V_1 \\ \mbox{CL:} & i(x,t) = i_C + i(x+\delta x,t) \end{array}$$

17: Transmission Lines

- Transmission Lines
- Transmission Line
- Equations

• Solution to Transmission Line Equations

- Forward Wave
- Forward + Backward Waves
- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line
- Characteristics
- Summary

A short section of line δx long:

v(x,t) and i(x,t) depend on both position and time.

Small $\delta x \Rightarrow$ ignore 2nd order derivatives:

$$\frac{\partial v(x,t)}{\partial t} = \frac{\partial v(x+\delta x,t)}{\partial t} \stackrel{\Delta}{=} \frac{\partial v}{\partial t}.$$

Basic Equations

$$\begin{array}{ll} \text{KVL:} & v(x,t) = V_2 + v(x + \delta x,t) + V_1 \\ \text{KCL:} & i(x,t) = i_C + i(x + \delta x,t) \\ \text{Capacitor equation:} & C \frac{\partial v}{\partial t} = i_C = i(x,t) - i(x + \delta x,t) = -\frac{\partial i}{\partial x} \delta x \end{array}$$

 δx

 V_2

i(x,t)

v(x,t)

i(x,t)

 $i(x+\delta x,t)$

 $i(x+\delta x,t)$

 $v(x+\delta x,t)$

 l_C

17: Transmission Lines

- Transmission Lines
- Transmission Line
- Equations

• Solution to Transmission Line Equations

- Forward Wave
- Forward + Backward Waves
- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line
- Characteristics
- Summary

A short section of line δx long:

v(x,t) and i(x,t) depend on both position and time.

Small $\delta x \Rightarrow$ ignore 2nd order derivatives:

$$\frac{\partial v(x,t)}{\partial t} = \frac{\partial v(x+\delta x,t)}{\partial t} \stackrel{\Delta}{=} \frac{\partial v}{\partial t}.$$

Basic Equations

 $\begin{array}{ll} \text{KVL:} & v(x,t) = V_2 + v(x + \delta x,t) + V_1 \\ \text{KCL:} & i(x,t) = i_C + i(x + \delta x,t) \\ \text{Capacitor equation:} & C\frac{\partial v}{\partial t} = i_C = i(x,t) - i(x + \delta x,t) = -\frac{\partial i}{\partial x}\delta x \\ \text{Inductor equation } (L_1 \text{ and } L_2 \text{ have the same current):} \\ & (L_1 + L_2) \frac{\partial i}{\partial t} = V_1 + V_2 = v(x,t) - v(x + \delta x,t) = -\frac{\partial v}{\partial x}\delta x \end{array}$

17: Transmission Lines

- Transmission Lines
- Transmission Line
- Equations

• Solution to Transmission Line Equations

- Forward Wave
- Forward + Backward Waves
- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line
- Characteristics
- Summary

A short section of line δx long:

v(x,t) and i(x,t) depend on both position and time.

Small $\delta x \Rightarrow$ ignore 2nd order derivatives:

$$\frac{\partial v(x,t)}{\partial t} = \frac{\partial v(x+\delta x,t)}{\partial t} \stackrel{\Delta}{=} \frac{\partial v}{\partial t}.$$

Basic Equations

$$\begin{array}{ll} \text{KVL:} & v(x,t) = V_2 + v(x + \delta x,t) + V_1 \\ \text{KCL:} & i(x,t) = i_C + i(x + \delta x,t) \\ \text{Capacitor equation:} & C \frac{\partial v}{\partial t} = i_C = i(x,t) - i(x + \delta x,t) = -\frac{\partial i}{\partial x} \delta x \\ \text{nductor equation } (L_1 \text{ and } L_2 \text{ have the same current):} \\ & (L_1 + L_2) \frac{\partial i}{\partial t} = V_1 + V_2 = v(x,t) - v(x + \delta x,t) = -\frac{\partial v}{\partial x} \delta x \end{array}$$

Transmission Line Equations

$$C_0 \frac{\partial v}{\partial t} = -\frac{\partial i}{\partial x}$$
$$L_0 \frac{\partial i}{\partial t} = -\frac{\partial v}{\partial x}$$

Sx

 V_{2}

i(x,t)

v(x,t)

i(x,t)

 $i(x+\delta x,t)$

 $i(x+\delta x,t)$

 $v(x+\delta x,t)$

 l_{C}

17: Transmission Lines

- Transmission Lines
- Transmission Line
- Equations

• Solution to Transmission Line Equations

- Forward Wave
- Forward + Backward Waves
- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line
- Characteristics
- Summary

A short section of line δx long:

v(x,t) and i(x,t) depend on both position and time.

Small $\delta x \Rightarrow$ ignore 2nd order derivatives:

$$\frac{\partial v(x,t)}{\partial t} = \frac{\partial v(x+\delta x,t)}{\partial t} \stackrel{\Delta}{=} \frac{\partial v}{\partial t}.$$

Basic Equations

$$\begin{array}{ll} \text{KVL:} & v(x,t) = V_2 + v(x + \delta x,t) + V_1 \\ \text{KCL:} & i(x,t) = i_C + i(x + \delta x,t) \\ \text{Capacitor equation:} & C \frac{\partial v}{\partial t} = i_C = i(x,t) - i(x + \delta x,t) = -\frac{\partial i}{\partial x} \delta x \\ \text{nductor equation } (L_1 \text{ and } L_2 \text{ have the same current):} \\ & (L_1 + L_2) \frac{\partial i}{\partial t} = V_1 + V_2 = v(x,t) - v(x + \delta x,t) = -\frac{\partial v}{\partial x} \delta x \end{array}$$

Transmission Line Equations

$$C_0 \frac{\partial v}{\partial t} = -\frac{\partial i}{\partial x}$$
$$L_0 \frac{\partial i}{\partial t} = -\frac{\partial v}{\partial x}$$

where $C_0 = \frac{C}{\delta x}$ is the capacitance per unit length (Farads/m) and $L_0 = \frac{L_1 + L_2}{\delta x}$ is the total inductance per unit length (Henries/m).

l(x.t

v(x,t)

i(x,t)

 $v(x+\delta x,t)$

 $i(x+\delta)$

17: Transmission Lines

- Transmission Lines
- Transmission Line
- Equations
- Solution to Transmission Line Equations
- Forward Wave
- Forward + Backward

Waves

- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line
- Characteristics
- Summary

Transmission Line Equations: $C_0 \frac{\partial v}{\partial t} = -\frac{\partial i}{\partial x}$ $L_0 \frac{\partial i}{\partial t} = -\frac{\partial v}{\partial x}$

17: Transmission Lines

- Transmission Lines
- Transmission Line
- Equations

• Solution to Transmission Line Equations

- Forward Wave
- Forward + Backward

Waves

- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line
- Characteristics
- Summary

Transmission Line Equations: $C_0 \frac{\partial v}{\partial t} = -\frac{\partial i}{\partial x}$ $L_0 \frac{\partial i}{\partial t} = -\frac{\partial v}{\partial x}$ General solution: $v(t,x) = f(t-\frac{x}{u}) + g(t+\frac{x}{u})$ $i(t,x) = \frac{f(t-\frac{x}{u}) - g(t+\frac{x}{u})}{Z_0}$ where $u = \sqrt{\frac{1}{L_0C_0}}$ and $Z_0 = \sqrt{\frac{L_0}{C_0}}$.

17: Transmission Lines

- Transmission Lines
- Transmission Line
- Equations

• Solution to Transmission Line Equations

- Forward Wave
- Forward + Backward

Waves

- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line
- Characteristics
- Summary

Transmission Line Equations: $C_0 \frac{\partial v}{\partial t} = -\frac{\partial i}{\partial x}$ $L_0 \frac{\partial i}{\partial t} = -\frac{\partial v}{\partial x}$ General solution: $v(t,x) = f(t-\frac{x}{u}) + g(t+\frac{x}{u})$ $i(t,x) = \frac{f(t-\frac{x}{u})-g(t+\frac{x}{u})}{Z_0}$ where $u = \sqrt{\frac{1}{L_0C_0}}$ and $Z_0 = \sqrt{\frac{L_0}{C_0}}$.

u is the *propagation velocity* and Z_0 is the *characteristic impedance*.

17: Transmission Lines

- Transmission Lines
- Transmission Line
- Equations

• Solution to Transmission Line Equations

- Forward Wave
- Forward + Backward
- Waves
- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line
- Characteristics
- Summary

Transmission Line Equations: $C_0 \frac{\partial v}{\partial t} = -\frac{\partial i}{\partial x}$ $L_0 \frac{\partial i}{\partial t} = -\frac{\partial v}{\partial x}$ General solution: $v(t,x) = f(t-\frac{x}{u}) + g(t+\frac{x}{u})$ $i(t,x) = \frac{f(t-\frac{x}{u}) - g(t+\frac{x}{u})}{Z_0}$ where $u = \sqrt{\frac{1}{L_0C_0}}$ and $Z_0 = \sqrt{\frac{L_0}{C_0}}$.

u is the propagation velocity and Z_0 is the characteristic impedance.

f() and g() can be *any* differentiable functions.

17: Transmission Lines

- Transmission Lines
- Transmission Line
- Equations

• Solution to Transmission Line Equations

- Forward Wave
- Forward + Backward
- Waves
- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line
- Characteristics
- Summary

Transmission Line Equations: $C_0 \frac{\partial v}{\partial t} = -\frac{\partial i}{\partial x}$ $L_0 \frac{\partial i}{\partial t} = -\frac{\partial v}{\partial x}$ General solution: $v(t, x) = f(t - \frac{x}{u}) + g(t + \frac{x}{u})$ $i(t, x) = \frac{f(t - \frac{x}{u}) - g(t + \frac{x}{u})}{Z_0}$ where $u = \sqrt{\frac{1}{L_0 C_0}}$ and $Z_0 = \sqrt{\frac{L_0}{C_0}}$.

u is the *propagation velocity* and Z_0 is the *characteristic impedance*. f() and g() can be *any* differentiable functions.

Verify by substitution:

$$-\frac{\partial i}{\partial x} = -\left(\frac{-f'(t-\frac{x}{u})-g'(t+\frac{x}{u})}{Z_0} \times \frac{1}{u}\right)$$

17: Transmission Lines

- Transmission Lines
- Transmission Line
- Equations

• Solution to Transmission Line Equations

- Forward Wave
- Forward + Backward Waves
- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line
- Characteristics
- Summary

Transmission Line Equations: $C_0 \frac{\partial v}{\partial t} = -\frac{\partial i}{\partial x}$ $L_0 \frac{\partial i}{\partial t} = -\frac{\partial v}{\partial x}$ General solution: $v(t, x) = f(t - \frac{x}{u}) + g(t + \frac{x}{u})$ $i(t, x) = \frac{f(t - \frac{x}{u}) - g(t + \frac{x}{u})}{Z_0}$ where $u = \sqrt{\frac{1}{L_0 C_0}}$ and $Z_0 = \sqrt{\frac{L_0}{C_0}}$.

u is the *propagation velocity* and Z_0 is the *characteristic impedance*. f() and g() can be *any* differentiable functions.

Verify by substitution:

$$-\frac{\partial i}{\partial x} = -\left(\frac{-f'(t-\frac{x}{u})-g'(t+\frac{x}{u})}{Z_0} \times \frac{1}{u}\right)$$
$$= C_0\left(f'(t-\frac{x}{u})+g'(t+\frac{x}{u})\right) = C_0\frac{\partial v}{\partial t}$$

17: Transmission Lines

- Transmission Lines
- Transmission Line
- Equations
- Solution to Transmission Line Equations
- Forward Wave
- Forward + Backward Waves
- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line
- Characteristics
- Summary

Suppose:

- $u=15~{\rm cm/ns}$
- and $g(t) \equiv 0$ $\Rightarrow v(x,t) = f\left(t - \frac{x}{u}\right)$

17: Transmission Lines

- Transmission Lines
- Transmission Line
- Equations
- Solution to Transmission Line Equations
- Forward Wave
- Forward + Backward Waves
- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line
- Characteristics
- Summary

Suppose:

- u = 15 cm/ns
- and $g(t) \equiv 0$
- $\Rightarrow v(x,t) = f\left(t \frac{x}{u}\right)$
- At $x = 0 \operatorname{cm} [\blacktriangle]$, $v_S(t) = f(t - \frac{0}{u})$

17: Transmission Lines

- Transmission Lines
- Transmission Line
- Equations
- Solution to Transmission Line Equations
- Forward Wave
- Forward + Backward Waves
- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line
- Characteristics
- Summary

Suppose:

- u = 15 cm/ns
- and $g(t) \equiv 0$
- $\Rightarrow v(x,t) = f\left(t \frac{x}{u}\right)$
- At $x = 0 \operatorname{cm} [\blacktriangle]$, $v_S(t) = f(t - \frac{0}{u})$
- At $x = 45 \text{ cm} [\blacktriangle]$, $v(45,t) = f(t - \frac{45}{u})$

17: Transmission Lines

- Transmission Lines
- Transmission Line
- Equations
- Solution to Transmission Line Equations
- Forward Wave
- Forward + Backward Waves
- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line
- Characteristics
- Summary

Suppose:

- u = 15 cm/ns
- and $g(t)\equiv 0$
- $\Rightarrow v(x,t) = f\left(t \frac{x}{u}\right)$
- At $x = 0 \operatorname{cm} [\blacktriangle]$, $v_S(t) = f(t - \frac{0}{u})$
- At $x = 45 \text{ cm } [\blacktriangle]$, $v(45,t) = f(t - \frac{45}{u})$

 $f(t-\frac{45}{u})$ is exactly the same as f(t) but delayed by $\frac{45}{u}=3$ ns.

17: Transmission Lines

- Transmission Lines
- Transmission Line
- Equations
- Solution to Transmission Line Equations
- Forward Wave
- Forward + Backward Waves
- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line
- Characteristics
- Summary

Suppose:

- u=15 cm/ns
- and $g(t) \equiv 0$
- $\Rightarrow v(x,t) = f\left(t \frac{x}{u}\right)$
- At $x = 0 \operatorname{cm} [\blacktriangle]$, $v_S(t) = f(t - \frac{0}{u})$
- At $x = 45 \text{ cm } [\blacktriangle]$, $v(45,t) = f(t - \frac{45}{u})$

 $f(t-\frac{45}{u})$ is exactly the same as f(t) but delayed by $\frac{45}{u}=3$ ns.

• At
$$x = 90$$
 cm [], $v_R(t) = f(t - \frac{90}{u})$; now delayed by 6 ns

17: Transmission Lines

- Transmission Lines
- Transmission Line
- Equations
- Solution to Transmission Line Equations
- Forward Wave
- Forward + Backward Waves
- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line
- Characteristics
- Summary

Suppose:

- u=15 cm/ns
- and $q(t) \equiv 0$
- $\Rightarrow v(x,t) = f\left(t \frac{x}{u}\right)$
- At $x = 0 \operatorname{cm} [\blacktriangle]$, $v_S(t) = f(t - \frac{0}{u})$
- At $x = 45 \text{ cm} [\blacktriangle]$, $v(45,t) = f(t - \frac{45}{u})$

- $f(t \frac{45}{u})$ is exactly the same as f(t) but delayed by $\frac{45}{u} = 3$ ns.
- At x = 90 cm [], $v_R(t) = f(t \frac{90}{u})$; now delayed by 6 ns.

Waveform at x = 0 completely determines the waveform everywhere else.

17: Transmission Lines

- Transmission Lines
- Transmission Line
- Equations
- Solution to Transmission Line Equations
- Forward Wave
- Forward + Backward Waves
- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line
- Characteristics
- Summary

Suppose:

- u=15 cm/ns
- and $q(t) \equiv 0$
- $\Rightarrow v(x,t) = f\left(t \frac{x}{u}\right)$
- At $x = 0 \operatorname{cm} [\blacktriangle]$, $v_S(t) = f(t - \frac{0}{u})$
- At $x = 45 \text{ cm} [\blacktriangle]$, $v(45,t) = f(t - \frac{45}{u})$

- $f(t \frac{45}{u})$ is exactly the same as f(t) but delayed by $\frac{45}{u} = 3$ ns.
- At x = 90 cm [], $v_R(t) = f(t \frac{90}{u})$; now delayed by 6 ns.

Waveform at x = 0 completely determines the waveform everywhere else.

Snapshot at $t_0 = 4$ ns: the waveform has just arrived at the point $x = ut_0 = 60$ cm.

17: Transmission Lines

- Transmission Lines
- Transmission Line
- Equations
- Solution to Transmission Line Equations
- Forward Wave
- Forward + Backward Waves
- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line
- Characteristics
- Summary

Suppose:

- u=15 cm/ns
- and $q(t) \equiv 0$
- $\Rightarrow v(x,t) = f\left(t \frac{x}{u}\right)$
- At $x = 0 \operatorname{cm} [\blacktriangle]$, $v_S(t) = f(t - \frac{0}{u})$
- At $x = 45 \text{ cm} [\blacktriangle]$, $v(45,t) = f(t - \frac{45}{u})$

- $f(t-\frac{45}{u})$ is exactly the same as f(t) but delayed by $\frac{45}{u}=3$ ns.
- At x = 90 cm [], $v_R(t) = f(t \frac{90}{u})$; now delayed by 6 ns.

Waveform at x = 0 completely determines the waveform everywhere else.

Snapshot at $t_0 = 4$ ns: the waveform has just arrived at the point $x = ut_0 = 60$ cm.

17: Transmission Lines

- Transmission Lines
- Transmission Line
- Equations
- Solution to Transmission Line Equations
- Forward Wave
- Forward + Backward Waves
- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line
- Characteristics
- Summary

Suppose:

- u=15 cm/ns
- and $q(t) \equiv 0$
- $\Rightarrow v(x,t) = f\left(t \frac{x}{u}\right)$
- At $x = 0 \operatorname{cm} [\blacktriangle]$, $v_S(t) = f(t - \frac{0}{u})$
- At $x = 45 \text{ cm} [\blacktriangle]$, $v(45,t) = f(t - \frac{45}{u})$

- $f(t-\frac{45}{u})$ is exactly the same as f(t) but delayed by $\frac{45}{u}=3$ ns.
- At x = 90 cm [], $v_R(t) = f(t \frac{90}{u})$; now delayed by 6 ns.

Waveform at x = 0 completely determines the waveform everywhere else.

Snapshot at $t_0 = 4$ ns: the waveform has just arrived at the point $x = ut_0 = 60$ cm.

 $f(t - \frac{x}{u})$ is a wave travelling forward (i.e. towards +x) along the line.

Transmission Lines: 17 - 5 / 13

17: Transmission Lines

- Transmission Lines
- Transmission Line

Equations

• Solution to Transmission Line Equations

- Forward Wave
- Forward + Backward

Waves

- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line
- Characteristics
- Summary

Similarly $g(t + \frac{x}{u})$ is a wave travelling backwards, i.e. in the -x direction.

17: Transmission Lines

- Transmission Lines
- Transmission Line
- Equations
- Solution to Transmission Line Equations
- Forward Wave
- Forward + Backward
- Waves
- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line
- Characteristics
- Summary

Ō

2

4

6

8 Time (ns) 10

17: Transmission Lines

- Transmission Lines
- Transmission Line
- Equations
- Solution to Transmission Line Equations
- Forward Wave
- Forward + Backward
 Waves
- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line
- Characteristics
- Summary

17: Transmission Lines

- Transmission Lines
- Transmission Line
- Equations
- Solution to Transmission Line Equations
- Forward Wave
- Forward + Backward Waves
- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line
- Characteristics
- Summary

Similarly $g(t + \frac{x}{u})$ is a wave travelling backwards, i.e. in the -x direction. g(t+0/u) v(x,t) =f(t-0/u) x=0 $f(t-\frac{x}{u})+g(t+\frac{x}{u})$ g(t+90/u) f(t-90/u) At $x = 0 \text{ cm} [\blacktriangle]$, x=90 $v_S(t) = f(t) + g(t)$ 2 8 Time (ns) 10 Ō 4 6

At x = 90 cm [], g starts at t = 1 and f starts at t = 6.

17: Transmission Lines

- Transmission Lines
- Transmission Line
- Equations

• Solution to Transmission Line Equations

- Forward Wave
- Forward + Backward Waves
- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line
- Characteristics
- Summary

Similarly $g(t + \frac{x}{u})$ is a wave travelling backwards, i.e. in the -x direction.

At x = 45 cm [\blacktriangle], g is only 1 ns behind f and they add together. At x = 90 cm [\blacktriangle], g starts at t = 1 and f starts at t = 6.

17: Transmission Lines

- Transmission Lines
- Transmission Line
- Equations

• Solution to Transmission Line Equations

- Forward Wave
- Forward + Backward Waves
- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line
- Characteristics
- Summary

Similarly $g(t + \frac{x}{u})$ is a wave travelling backwards, i.e. in the -x direction.

$$\begin{split} v(x,t) &= \\ f(t-\frac{x}{u}) + g(t+\frac{x}{u}) \\ \text{At } x &= 0 \text{ cm } \texttt{[A]}, \\ v_S(t) &= f(t) + g(t) \end{split}$$

At x = 45 cm [\blacktriangle], g is only 1 ns behind f and they add together. At x = 90 cm [\blacktriangle], g starts at t = 1 and f starts at t = 6.

A vertical line on the diagram gives a snapshot of the entire line at a time instant t.

Forward + Backward Waves

17: Transmission Lines

- Transmission Lines
- Transmission Line
- Equations

• Solution to Transmission Line Equations

- Forward Wave
- Forward + Backward Waves
- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line
- Characteristics
- Summary

Similarly $g(t + \frac{x}{u})$ is a wave travelling backwards, i.e. in the -x direction.

$$\begin{split} v(x,t) &= \\ f(t-\frac{x}{u}) + g(t+\frac{x}{u}) \\ \text{At } x &= 0 \text{ cm } \texttt{[A]}, \\ v_S(t) &= f(t) + g(t) \end{split}$$

At x = 45 cm [\blacktriangle], g is only 1 ns behind f and they add together. At x = 90 cm [\blacktriangle], g starts at t = 1 and f starts at t = 6.

A vertical line on the diagram gives a snapshot of the entire line at a time instant t.

f and g first meet at t = 3.5and x = 52.5.

Forward + Backward Waves

17: Transmission Lines

- Transmission Lines
- Transmission Line
- Equations

• Solution to Transmission Line Equations

- Forward Wave
- Forward + Backward Waves
- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line
- Characteristics
- Summary

Similarly $g(t + \frac{x}{u})$ is a wave travelling backwards, i.e. in the -x direction.

At x = 45 cm [\blacktriangle], g is only 1 ns behind f and they add together. At x = 90 cm [\blacktriangle], g starts at t = 1 and f starts at t = 6.

A vertical line on the diagram gives a snapshot of the entire line at a time instant t.

f and g first meet at t = 3.5and x = 52.5.

Magically, f and g pass through each other entirely unaltered.

17: Transmission Lines

- Transmission Lines
- Transmission Line
- Equations

• Solution to Transmission Line Equations

- Forward Wave
- Forward + Backward Waves
- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line
- Characteristics
- Summary

Define $f_x(t) = f\left(t - \frac{x}{u}\right)$ and $g_x(t) = g\left(t + \frac{x}{u}\right)$ to be the forward and backward waveforms at any point, x.

17: Transmission Lines

- Transmission Lines
- Transmission Line
- Equations

• Solution to Transmission Line Equations

- Forward Wave
- Forward + Backward Waves
- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line
- Characteristics
- Summary

Define $f_x(t) = f\left(t - \frac{x}{u}\right)$ and $g_x(t) = g\left(t + \frac{x}{u}\right)$ to be the forward and backward waveforms at any point, x.

E1.1 Analysis of Circuits (2016-8284)

17: Transmission Lines

- Transmission Lines
- Transmission Line
- Equations

• Solution to Transmission Line Equations

- Forward Wave
- Forward + Backward Waves
- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line
- Characteristics
- Summary

Define $f_x(t) = f\left(t - \frac{x}{u}\right)$ and $g_x(t) = g\left(t + \frac{x}{u}\right)$ to be the forward and backward waveforms at any point, x.

Then $v_x(t) = f_x(t) + g_x(t)$ and $i_x(t) = Z_0^{-1} (f_x(t) - g_x(t))$. Note: Knowing the waveform $f_x(t)$ or $g_x(t)$ at any position x, tells you it at all other positions: $f_y(t) = f_x \left(t - \frac{y-x}{u}\right)$ and $g_y(t) = g_x \left(t + \frac{y-x}{u}\right)$.

17: Transmission Lines

- Transmission Lines
- Transmission Line
- Equations

• Solution to Transmission Line Equations

- Forward Wave
- Forward + Backward Waves
- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line
- Characteristics
- Summary

Define $f_x(t) = f\left(t - \frac{x}{u}\right)$ and $g_x(t) = g\left(t + \frac{x}{u}\right)$ to be the forward and backward waveforms at any point, x.

Then $v_x(t) = f_x(t) + g_x(t)$ and $i_x(t) = Z_0^{-1} (f_x(t) - g_x(t))$. Note: Knowing the waveform $f_x(t)$ or $g_x(t)$ at any position x, tells you it at all other positions: $f_y(t) = f_x \left(t - \frac{y-x}{u}\right)$ and $g_y(t) = g_x \left(t + \frac{y-x}{u}\right)$.

Power Flow

The power transferred into the shaded region across the boundary at x is $P_x(t) = v_x(t) i_x(t)$

17: Transmission Lines

- Transmission Lines
- Transmission Line
- Equations

• Solution to Transmission Line Equations

- Forward Wave
- Forward + Backward Waves
- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line
- Characteristics
- Summary

Define $f_x(t) = f\left(t - \frac{x}{u}\right)$ and $g_x(t) = g\left(t + \frac{x}{u}\right)$ to be the forward and backward waveforms at any point, x.

Then $v_x(t) = f_x(t) + g_x(t)$ and $i_x(t) = Z_0^{-1} (f_x(t) - g_x(t))$. Note: Knowing the waveform $f_x(t)$ or $g_x(t)$ at any position x, tells you it at all other positions: $f_y(t) = f_x \left(t - \frac{y-x}{u}\right)$ and $g_y(t) = g_x \left(t + \frac{y-x}{u}\right)$.

Power Flow

The power transferred into the shaded region across the boundary at x is $P_x(t) = v_x(t)i_x(t) = Z_0^{-1} \left(f_x(t) + g_x(t)\right) \left(f_x(t) - g_x(t)\right)$

17: Transmission Lines

- Transmission Lines
- Transmission Line
- Equations

 Solution to Transmission Line Equations

- Forward Wave
- Forward + Backward Waves
- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line
- Characteristics
- Summary

Define $f_x(t) = f\left(t - \frac{x}{u}\right)$ and $g_x(t) = g\left(t + \frac{x}{u}\right)$ to be the forward and backward waveforms at any point, x.

 $v_x(t) = f_x(t) + g_x(t)$ and $i_x(t) = Z_0^{-1} (f_x(t) - g_x(t)).$ Then Note: Knowing the waveform $f_x(t)$ or $g_x(t)$ at any position x, tells you it at all other positions: $f_u(t) = f_x\left(t - \frac{y-x}{u}\right)$ and $g_u(t) = g_x\left(t + \frac{y-x}{u}\right)$.

Power Flow

The power transferred into the shaded region across the boundary at x is $P_x(t) = v_x(t)i_x(t) = Z_0^{-1} \left(f_x(t) + g_x(t) \right) \left(f_x(t) - g_x(t) \right)$ $=\frac{f_x^2(t)}{Z_x}-\frac{g_x^2(t)}{Z_x}$

17: Transmission Lines

- Transmission Lines
- Transmission Line
- Equations

• Solution to Transmission Line Equations

- Forward Wave
- Forward + Backward Waves
- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line
- Characteristics
- Summary

Define $f_x(t) = f\left(t - \frac{x}{u}\right)$ and $g_x(t) = g\left(t + \frac{x}{u}\right)$ to be the forward and backward waveforms at any point, x.

Then $v_x(t) = f_x(t) + g_x(t)$ and $i_x(t) = Z_0^{-1} (f_x(t) - g_x(t))$. Note: Knowing the waveform $f_x(t)$ or $g_x(t)$ at any position x, tells you it at all other positions: $f_y(t) = f_x \left(t - \frac{y-x}{u}\right)$ and $g_y(t) = g_x \left(t + \frac{y-x}{u}\right)$.

Power Flow

The power transferred into the shaded region across the boundary at x is $P_x(t) = v_x(t)i_x(t) = Z_0^{-1} \left(f_x(t) + g_x(t)\right) \left(f_x(t) - g_x(t)\right)$ $= \frac{f_x^2(t)}{Z_0} - \frac{g_x^2(t)}{Z_0}$

 f_x carries power into shaded area and g_x carries power out independently.

17: Transmission Lines

- Transmission Lines
- Transmission Line
- Equations

• Solution to Transmission Line Equations

- Forward Wave
- Forward + Backward Waves
- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line
- Characteristics
- Summary

Define $f_x(t) = f\left(t - \frac{x}{u}\right)$ and $g_x(t) = g\left(t + \frac{x}{u}\right)$ to be the forward and backward waveforms at any point, x.

Then $v_x(t) = f_x(t) + g_x(t)$ and $i_x(t) = Z_0^{-1} (f_x(t) - g_x(t))$. Note: Knowing the waveform $f_x(t)$ or $g_x(t)$ at any position x, tells you it at all other positions: $f_y(t) = f_x (t - \frac{y-x}{u})$ and $g_y(t) = g_x (t + \frac{y-x}{u})$.

Power Flow

The power transferred into the shaded region across the boundary at x is $P_x(t) = v_x(t)i_x(t) = Z_0^{-1} \left(f_x(t) + g_x(t)\right) \left(f_x(t) - g_x(t)\right)$ $= \frac{f_x^2(t)}{Z_0} - \frac{g_x^2(t)}{Z_0}$

 f_x carries power into shaded area and g_x carries power out independently. Power travels in the same direction as the wave.

17: Transmission Lines

- Transmission Lines
- Transmission Line
- Equations

 Solution to Transmission Line Equations

- Forward Wave
- Forward + Backward Waves
- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line
- Characteristics
- Summary

Define $f_x(t) = f\left(t - \frac{x}{u}\right)$ and $g_x(t) = g\left(t + \frac{x}{u}\right)$ to be the forward and backward waveforms at any point, x.

+ve x direction.

 $v_x(t) = f_x(t) + g_x(t)$ and $i_x(t) = Z_0^{-1} (f_x(t) - g_x(t)).$ Then Note: Knowing the waveform $f_x(t)$ or $g_x(t)$ at any position x, tells you it at all other positions: $f_u(t) = f_x\left(t - \frac{y-x}{u}\right)$ and $g_u(t) = g_x\left(t + \frac{y-x}{u}\right)$.

Power Flow

The power transferred into the shaded region across the boundary at x is $P_x(t) = v_x(t)i_x(t) = Z_0^{-1} \left(f_x(t) + g_x(t) \right) \left(f_x(t) - g_x(t) \right)$ $=\frac{f_x^2(t)}{Z_0}-\frac{g_x^2(t)}{Z_0}$

 f_x carries power into shaded area and g_x carries power out independently. Power travels in the same direction as the wave.

The same power as would be absorbed by a [ficticious] resistor of value Z_0 .

17: Transmission Lines

- Transmission Lines
- Transmission Line
- Equations
- Solution to Transmission Line Equations
- Forward Wave
- Forward + Backward Waves
- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line
- Characteristics
- Summary

$$v_x = f_x + g_x$$

 $i_x = Z_0^{-1} (f_x - g_x)$

From Ohm's law at x = L, we have $v_L(t) = i_L(t)R_L$

17: Transmission Lines

- Transmission Lines
- Transmission Line
- Equations
- Solution to Transmission Line Equations
- Forward Wave
- Forward + Backward Waves
- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line
- Characteristics
- Summary

$$v_x = f_x + g_x$$

$$i_x = Z_0^{-1} \left(f_x - g_x \right)$$

From Ohm's law at x = L, we have $v_L(t) = i_L(t)R_L$ Hence $(f_L(t) + g_L(t)) = Z_0^{-1} (f_L(t) - g_L(t))R_L$

17: Transmission Lines

- Transmission Lines
- Transmission Line
- Equations
- Solution to Transmission Line Equations
- Forward Wave
- Forward + Backward Waves
- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line
- Characteristics
- Summary

$$v_x = f_x + g_x$$

 $i_x = Z_0^{-1} (f_x - g_x)$

From Ohm's law at x = L, we have $v_L(t) = i_L(t)R_L$ Hence $(f_L(t) + g_L(t)) = Z_0^{-1} (f_L(t) - g_L(t))R_L$ From this: $g_L(t) = \frac{R_L - Z_0}{R_L + Z_0} \times f_L(t)$

17: Transmission Lines

- Transmission Lines
- Transmission Line
- Equations
- Solution to Transmission Line Equations
- Forward Wave
- Forward + Backward Waves
- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line
- Characteristics
- Summary

$$v_x = f_x + g_x$$

 $i_x = Z_0^{-1} (f_x - g_x)$

From Ohm's law at x = L, we have $v_L(t) = i_L(t)R_L$ Hence $(f_L(t) + g_L(t)) = Z_0^{-1} (f_L(t) - g_L(t))R_L$ From this: $g_L(t) = \frac{R_L - Z_0}{R_L + Z_0} \times f_L(t)$

We define the *reflection coefficient*: $\rho_L = \frac{g_L(t)}{f_L(t)} = \frac{R_L - Z_0}{R_L + Z_0} = +0.5$

17: Transmission Lines

- Transmission Lines
- Transmission Line
- Equations
- Solution to Transmission Line Equations
- Forward Wave
- Forward + Backward Waves
- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line
- Characteristics
- Summary

$$v_x = f_x + g_x$$

 $i_x = Z_0^{-1} (f_x - g_x)$

From Ohm's law at x = L, we have $v_L(t) = i_L(t)R_L$ Hence $(f_L(t) + g_L(t)) = Z_0^{-1} (f_L(t) - g_L(t))R_L$ From this: $g_L(t) = \frac{R_L - Z_0}{R_L + Z_0} \times f_L(t)$

We define the *reflection coefficient*: $\rho_L = \frac{g_L(t)}{f_L(t)} = \frac{R_L - Z_0}{R_L + Z_0} = +0.5$ Substituting $g_L(t) = \rho_L f_L(t)$ gives $v_L(t) = (1 + \rho_L) f_L(t)$ and $i_L(t) = (1 - \rho_L) Z_0^{-1} f_L(t)$

 $v_0(t)$

6

8

10

12

14

16

18 Time (ns)

17: Transmission Lines

- Transmission Lines
- Transmission Line
- Equations
- Solution to Transmission Line Equations
- Forward Wave
- Forward + Backward Waves
- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line
- Characteristics
- Summary

$$v_x = f_x + g_x$$

 $i_x = Z_0^{-1} (f_x - g_x)$

From Ohm's law at x = L, we have $v_L(t) = i_L(t)R_L$ Hence $(f_L(t) + g_L(t)) = Z_0^{-1} (f_L(t) - g_L(t)) R_L$ From this: $g_L(t) = \frac{R_L - Z_0}{R_L + Z_0} \times f_L(t)$

We define the *reflection coefficient*: $\rho_L = \frac{g_L(t)}{f_L(t)} = \frac{R_L - Z_0}{R_L + Z_0} = +0.5$ Substituting $g_L(t) = \rho_L f_L(t)$ gives $v_L(t) = (1 + \rho_L) f_L(t)$ and $i_L(t) = (1 - \rho_L) Z_0^{-1} f_L(t)$

At source end:
$$g_0(t) =
ho_L f_0\left(t-rac{2L}{u}
ight)$$
 i.e. delayed by $rac{2L}{u} = 12$ ns.

17: Transmission Lines

- Transmission Lines
- Transmission Line
- Equations
- Solution to Transmission Line Equations
- Forward Wave
- Forward + Backward Waves
- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line
- Characteristics
- Summary

$$v_x = f_x + g_x$$

 $i_x = Z_0^{-1} (f_x - g_x)$

From Ohm's law at x = L, we have $v_L(t) = i_L(t)R_L$ Hence $(f_L(t) + g_L(t)) = Z_0^{-1} (f_L(t) - g_L(t))R_L$ From this: $g_L(t) = \frac{R_L - Z_0}{R_L + Z_0} \times f_L(t)$

We define the *reflection coefficient*: $\rho_L = \frac{g_L(t)}{f_L(t)} = \frac{R_L - Z_0}{R_L + Z_0} = +0.5$ Substituting $g_L(t) = \rho_L f_L(t)$ gives $v_L(t) = (1 + \rho_L) f_L(t)$ and $i_L(t) = (1 - \rho_L) Z_0^{-1} f_L(t)$

At source end: $g_0(t) = \rho_L f_0 \left(t - \frac{2L}{u} \right)$ i.e. delayed by $\frac{2L}{u} = 12$ ns. Note that the reflected current has been multiplied by $-\rho$.

17: Transmission Lines

- Transmission Lines
- Transmission Line
- Equations
- Solution to Transmission Line Equations
- Forward Wave
- Forward + Backward

Waves

- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line
- Characteristics
- Summary

$\frac{R}{Z_0}$	ρ	$rac{v_L(t)}{f(t)}$	$\frac{i_L(t)Z_0}{f(t)}$	Comment
3	+0.5			

17: Transmission Lines

- Transmission Lines
- Transmission Line
- Equations
- Solution to Transmission Line Equations
- Forward Wave
- Forward + Backward
- Waves
- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line
- Characteristics
- Summary

$\frac{R}{Z_0}$	ρ	$\frac{v_L(t)}{f(t)}$	$\frac{i_L(t)Z_0}{f(t)}$	Comment
3	+0.5	1.5		

17: Transmission Lines

- Transmission Lines
- Transmission Line
- Equations
- Solution to Transmission Line Equations
- Forward Wave
- Forward + Backward Waves
- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line
- Characteristics
- Summary

$\frac{R}{Z_0}$	ρ	$\frac{v_L(t)}{f(t)}$	$\frac{i_L(t)Z_0}{f(t)}$	Comment
3	+0.5	1.5	0.5	

17: Transmission Lines

- Transmission Lines
- Transmission Line
- Equations
- Solution to Transmission Line Equations
- Forward Wave
- Forward + Backward Waves
- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line
- Characteristics
- Summary

$\frac{R}{Z_0}$	ρ	$rac{{v}_L(t)}{f(t)}$	$\frac{i_L(t)Z_0}{f(t)}$	Comment
3	+0.5	1.5	0.5	$R > Z_0 \Rightarrow \rho > 0$

17: Transmission Lines

- Transmission Lines
- Transmission Line
- Equations
- Solution to Transmission Line Equations
- Forward Wave
- Forward + Backward Waves
- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line
- Characteristics
- Summary

$\frac{R}{Z_0}$	ρ	$rac{v_L(t)}{f(t)}$	$\frac{i_L(t)Z_0}{f(t)}$	Comment
3	+0.5	1.5	0.5	$R > Z_0 \Rightarrow \rho > 0$
$\frac{1}{3}$	-0.5	0.5	1.5	$R < Z_0 \Rightarrow \rho < 0$

17: Transmission Lines

- Transmission Lines
- Transmission Line
- Equations
- Solution to Transmission Line Equations
- Forward Wave
- Forward + Backward Waves
- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line
- Characteristics
- Summary

$\frac{R}{Z_0}$	ρ	$rac{v_L(t)}{f(t)}$	$\frac{i_L(t)Z_0}{f(t)}$	Comment
$\begin{array}{c} 3\\ 1\\ \frac{1}{3} \end{array}$	$+0.5 \\ 0 \\ -0.5$	$\begin{array}{c} 1.5\\1\\0.5\end{array}$	$0.5 \\ 1 \\ 1.5$	$R>Z_0\Rightarrow ho>0$ Matched: No reflection at all $R< Z_0\Rightarrow ho<0$

17: Transmission Lines

- Transmission Lines
- Transmission Line
- Equations
- Solution to Transmission Line Equations
- Forward Wave
- Forward + Backward Waves
- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line
- Characteristics
- Summary

$\frac{R}{Z_0}$	ρ	$rac{v_L(t)}{f(t)}$	$\frac{i_L(t)Z_0}{f(t)}$	Comment
∞	+1	2	0	Open circuit: $v_L = 2f$, $i_L \equiv 0$
3	+0.5	1.5	0.5	$R > Z_0 \Rightarrow \rho > 0$
1	0	1	1	Matched: No reflection at all
$\frac{1}{3}$	-0.5	0.5	1.5	$R < Z_0 \Rightarrow \rho < 0$

17: Transmission Lines

- Transmission Lines
- Transmission Line
- Equations
- Solution to Transmission Line Equations
- Forward Wave
- Forward + Backward Waves
- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line
- Characteristics
- Summary

ρ depends on	the ratio	$\frac{R}{Z_0}$.
-------------------	-----------	-------------------

$\frac{R}{Z_0}$	ρ	$rac{{v}_L(t)}{f(t)}$	$\frac{i_L(t)Z_0}{f(t)}$	Comment
∞	+1	2	0	Open circuit: $v_L = 2f$, $i_L \equiv 0$
3	+0.5	1.5	0.5	$R > Z_0 \Rightarrow \rho > 0$
1	0	1	1	Matched: No reflection at all
$\frac{1}{3}$	-0.5	0.5	1.5	$R < Z_0 \Rightarrow \rho < 0$
0	-1	0	2	Short circuit: $v_L \equiv 0$, $i_L = \frac{2f}{Z_0}$

17: Transmission Lines

- Transmission Lines
- Transmission Line
- Equations
- Solution to Transmission Line Equations
- Forward Wave
- Forward + Backward Waves
- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line
- Characteristics
- Summary

ρ depends on the ratio	$\frac{R}{Z_0}$.
-----------------------------	-------------------

$\frac{R}{Z_0}$	ρ	$rac{v_L(t)}{f(t)}$	$\frac{i_L(t)Z_0}{f(t)}$	Comment
∞	+1	2	0	Open circuit: $v_L=2f$, $i_L\equiv 0$
3	+0.5	1.5	0.5	$R > Z_0 \Rightarrow \rho > 0$
1	0	1	1	Matched: No reflection at all
$\frac{1}{3}$	-0.5	0.5	1.5	$R < Z_0 \Rightarrow \rho < 0$
0	-1	0	2	Short circuit: $v_L \equiv 0$, $i_L = rac{2f}{Z_0}$

Note: Reverse mapping is $R = \frac{v_L}{i_L} = \frac{1+\rho}{1-\rho} \times Z_0$

17: Transmission Lines

- Transmission Lines
- Transmission Line
- Equations
- Solution to Transmission Line Equations
- Forward Wave
- Forward + Backward Waves
- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line
- Characteristics
- Summary

 ρ depends on the ratio $\frac{R}{Z_0}.$

$\frac{R}{Z_0}$	ρ	$rac{{v}_L(t)}{f(t)}$	$\frac{i_L(t)Z_0}{f(t)}$	Comment
∞	+1	2	0	Open circuit: $v_L = 2f$, $i_L \equiv 0$
3	+0.5	1.5	0.5	$R > Z_0 \Rightarrow \rho > 0$
1	0	1	1	Matched: No reflection at all
$\frac{1}{3}$	-0.5	0.5	1.5	$R < Z_0 \Rightarrow \rho < 0$
0	-1	0	2	Short circuit: $v_L\equiv 0$, $i_L=rac{2f}{Z_0}$

Note: Reverse mapping is $R = \frac{v_L}{i_L} = \frac{1+\rho}{1-\rho} \times Z_0$ Remember: $\rho \in \{-1, +1\}$ and increases with R.

17: Transmission Lines

- Transmission Lines
- Transmission Line
- Equations
- Solution to Transmission Line Equations
- Forward Wave
- Forward + Backward Waves
- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line
- Characteristics
- Summary

From Ohm's law at x = 0, we have $v_0(t) = v_S(t) - i_0(t)R_S$ where R_S is the Thévenin resistance of the voltage source.

17: Transmission Lines

- Transmission Lines
- Transmission Line
- Equations
- Solution to Transmission Line Equations
- Forward Wave
- Forward + Backward Waves
- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line
- Characteristics
- Summary

From Ohm's law at x = 0, we have $v_0(t) = v_S(t) - i_0(t)R_S$ where R_S is the Thévenin resistance of the voltage source.

Substituting $v_0(t) = f_0 + g_0$ and $i_0(t) = \frac{f_0 - g_0}{Z_0}$ leads to:

$$f_0(t) = \frac{Z_0}{R_S + Z_0} v_S(t) + \frac{R_S - Z_0}{R_S + Z_0} g_0(t)$$

17: Transmission Lines

- Transmission Lines
- Transmission Line
- Equations
- Solution to Transmission Line Equations
- Forward Wave
- Forward + Backward Waves
- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line
- Characteristics
- Summary

From Ohm's law at x = 0, we have $v_0(t) = v_S(t) - i_0(t)R_S$ where R_S is the Thévenin resistance of the voltage source.

Substituting $v_0(t) = f_0 + g_0$ and $i_0(t) = \frac{f_0 - g_0}{Z_0}$ leads to:

$$f_0(t) = \frac{Z_0}{R_S + Z_0} v_S(t) + \frac{R_S - Z_0}{R_S + Z_0} g_0(t) \triangleq \tau_0 v_S(t) + \rho_0 g_0(t)$$

17: Transmission Lines

- Transmission Lines
- Transmission Line
- Equations
- Solution to Transmission Line Equations
- Forward Wave
- Forward + Backward Waves
- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line
- Characteristics
- Summary

From Ohm's law at x = 0, we have $v_0(t) = v_S(t) - i_0(t)R_S$ where R_S is the Thévenin resistance of the voltage source.

Substituting
$$v_0(t) = f_0 + g_0$$
 and $i_0(t) = \frac{f_0 - g_0}{Z_0}$ leads to:

$$f_0(t) = \frac{Z_0}{R_S + Z_0} v_S(t) + \frac{R_S - Z_0}{R_S + Z_0} g_0(t) \triangleq \tau_0 v_S(t) + \rho_0 g_0(t)$$

So $f_0(t)$ is the superposition of two terms:

(1) Input $v_S(t)$ multiplied by $\tau_0 = \frac{Z_0}{R_S + Z_0}$ which is the same as a potential divider if you replace the line with a [ficticious] resistor Z_0 .

17: Transmission Lines

- Transmission Lines
- Transmission Line
- Equations
- Solution to Transmission Line Equations
- Forward Wave
- Forward + Backward Waves
- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line
- Characteristics
- Summary

From Ohm's law at x = 0, we have $v_0(t) = v_S(t) - i_0(t)R_S$ where R_S is the Thévenin resistance of the voltage source.

Substituting
$$v_0(t) = f_0 + g_0$$
 and $i_0(t) = \frac{f_0 - g_0}{Z_0}$ leads to:

$$f_0(t) = \frac{Z_0}{R_S + Z_0} v_S(t) + \frac{R_S - Z_0}{R_S + Z_0} g_0(t) \triangleq \tau_0 v_S(t) + \rho_0 g_0(t)$$

So $f_0(t)$ is the superposition of two terms:

(1) Input $v_S(t)$ multiplied by $\tau_0 = \frac{Z_0}{R_S + Z_0}$ which is the same as a potential divider if you replace the line with a [ficticious] resistor Z_0 . (2) The incoming backward wave, $g_0(t)$, multiplied by a reflection coefficient: $\rho_0 = \frac{R_S - Z_0}{R_S + Z_0}$.

17: Transmission Lines

- Transmission Lines
- Transmission Line
- Equations
- Solution to Transmission Line Equations
- Forward Wave
- Forward + Backward Waves
- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line
- Characteristics
- Summary

From Ohm's law at x = 0, we have $v_0(t) = v_S(t) - i_0(t)R_S$ where R_S is the Thévenin resistance of the voltage source.

Substituting
$$v_0(t) = f_0 + g_0$$
 and $i_0(t) = \frac{f_0 - g_0}{Z_0}$ leads to:

$$f_0(t) = \frac{Z_0}{R_S + Z_0} v_S(t) + \frac{R_S - Z_0}{R_S + Z_0} g_0(t) \triangleq \tau_0 v_S(t) + \rho_0 g_0(t)$$

So $f_0(t)$ is the superposition of two terms:

(1) Input $v_S(t)$ multiplied by $\tau_0 = \frac{Z_0}{R_S + Z_0}$ which is the same as a potential divider if you replace the line with a [ficticious] resistor Z_0 . (2) The incoming backward wave, $g_0(t)$, multiplied by a reflection coefficient: $\rho_0 = \frac{R_S - Z_0}{R_S + Z_0}$.

For
$$R_S = 20$$
: $\tau_0 = \frac{100}{20+100} = 0.83$ and $\rho_0 = \frac{20-100}{20+100} = -0.67$.

Multiple Reflections

17: Transmission Lines

- Transmission Lines
- Transmission Line
- Equations
- Solution to Transmission Line Equations
- Forward Wave
- Forward + Backward

Waves

- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line
- Characteristics
- Summary

 $\rho_0 = -\frac{2}{3}$ $\rho_L = \frac{1}{2}$ $v_x = f_x + g_x$

Multiple Reflections

17: Transmission Lines

- Transmission Lines
- Transmission Line
- Equations
- Solution to Transmission Line Equations
- Forward Wave
- Forward + Backward

Waves

- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line
- Characteristics
- Summary

17: Transmission Lines

- Transmission Lines
- Transmission Line
- Equations
- Solution to Transmission Line Equations
- Forward Wave
- Forward + Backward

- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line
- Characteristics
- Summary

17: Transmission Lines

- Transmission Lines
- Transmission Line
- Equations
- Solution to Transmission Line Equations
- Forward Wave
- Forward + Backward

- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line
- Characteristics
- Summary

17: Transmission Lines

- Transmission Lines
- Transmission Line
- Equations
- Solution to Transmission Line Equations
- Forward Wave
- Forward + Backward

- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line
- Characteristics
- Summary

17: Transmission Lines

- Transmission Lines
- Transmission Line
- Equations
- Solution to Transmission Line Equations
- Forward Wave
- Forward + Backward

- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line
- Characteristics
- Summary

17: Transmission Lines

- Transmission Lines
- Transmission Line
- Equations
- Solution to Transmission Line Equations
- Forward Wave
- Forward + Backward

- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line
- Characteristics
- Summary

17: Transmission Lines

- Transmission Lines
- Transmission Line
- Equations

• Solution to Transmission Line Equations

- Forward Wave
- Forward + Backward Waves
- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line
- Characteristics
- Summary

$$\rho_0 = -\frac{1}{3}$$
$$\rho_L = \frac{1}{2}$$
$$v_x = f_x + g_x$$

2

$$f_0(t) = \sum_{i=0}^{\infty} \tau_0 \rho_L^i \rho_0^i v_S \left(t - \frac{2Li}{u} \right)$$

17: Transmission Lines

- Transmission Lines
- Transmission Line
- Equations

• Solution to Transmission Line Equations

- Forward Wave
- Forward + Backward Waves
- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line
- Characteristics
- Summary

$$f_0(t) = \sum_{i=0}^{\infty} \tau_0 \rho_L^i \rho_0^i v_S \left(t - \frac{2Li}{u} \right)$$
$$g_L(t) = \rho_L f_0 \left(t - \frac{L}{u} \right)$$

17: Transmission Lines

- Transmission Lines
- Transmission Line
- Equations

• Solution to Transmission Line Equations

- Forward Wave
- Forward + Backward Waves
- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line
- Characteristics
- Summary

$$\rho_0 = -\frac{1}{3}$$
$$\rho_L = \frac{1}{2}$$
$$v_x = f_x + g_x$$

2

Each extra bit of f_0 is delayed by $\frac{2L}{u}$ (=12 ns) and multiplied by $\rho_L \rho_0$:

$$f_0(t) = \sum_{i=0}^{\infty} \tau_0 \rho_L^i \rho_0^i v_S \left(t - \frac{2Li}{u} \right)$$
$$g_L(t) = \rho_L f_0 \left(t - \frac{L}{u} \right)$$

$$\begin{aligned}
\psi_0(t) &= \\
f_0(t) + g_L \left(t - \frac{L}{u} \right)
\end{aligned}$$

1

17: Transmission Lines

- Transmission Lines
- Transmission Line
- Equations

• Solution to Transmission Line Equations

- Forward Wave
- Forward + Backward Waves
- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line
- Characteristics
- Summary

$$\rho_0 = -\frac{2}{3}$$
$$\rho_L = \frac{1}{2}$$
$$v_x = f_x + g_x$$

0

$$f_0(t) = \sum_{i=0}^{\infty} \tau_0 \rho_L^i \rho_0^i v_S \left(t - \frac{2Li}{u} \right)$$
$$g_L(t) = \rho_L f_0 \left(t - \frac{L}{u} \right)$$

$$v_0(t) = f_0(t) + g_L \left(t - \frac{L}{u}\right)$$

17: Transmission Lines

- Transmission Lines
- Transmission Line
- Equations

• Solution to Transmission Line Equations

- Forward Wave
- Forward + Backward Waves
- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line
- Characteristics
- Summary

$$\rho_0 = -\frac{2}{3}$$
$$\rho_L = \frac{1}{2}$$
$$v_x = f_x + g_x$$

9

$$f_0(t) = \sum_{i=0}^{\infty} \tau_0 \rho_L^i \rho_0^i v_S \left(t - \frac{2Li}{u} \right)$$
$$g_L(t) = \rho_L f_0 \left(t - \frac{L}{u} \right)$$

$$v_0(t) = f_0(t) + g_L \left(t - \frac{L}{u}\right)$$

17: Transmission Lines

- Transmission Lines
- Transmission Line
- Equations

• Solution to Transmission Line Equations

- Forward Wave
- Forward + Backward Waves
- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line
- Characteristics
- Summary

$$\rho_0 = -\frac{2}{3}$$
$$\rho_L = \frac{1}{2}$$
$$v_x = f_x + g_x$$

9

$$f_0(t) = \sum_{i=0}^{\infty} \tau_0 \rho_L^i \rho_0^i v_S \left(t - \frac{2Li}{u} \right)$$
$$g_L(t) = \rho_L f_0 \left(t - \frac{L}{u} \right)$$

$$v_0(t) = f_0(t) + g_L \left(t - \frac{L}{u}\right)$$

17: Transmission Lines

- Transmission Lines
- Transmission Line
- Equations

• Solution to Transmission Line Equations

- Forward Wave
- Forward + Backward Waves
- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line
- Characteristics
- Summary

$$\rho_0 = -\frac{2}{3}$$
$$\rho_L = \frac{1}{2}$$
$$v_x = f_x + g_x$$

2

Each extra bit of f_0 is delayed by $\frac{2L}{u}$ (=12 ns) and multiplied by $\rho_L \rho_0$:

$$f_0(t) = \sum_{i=0}^{\infty} \tau_0 \rho_L^i \rho_0^i v_S \left(t - \frac{2Li}{u} \right)$$
$$g_L(t) = \rho_L f_0 \left(t - \frac{L}{u} \right)$$

$$v_0(t) = f_0(t) + g_L \left(t - \frac{L}{u}\right)$$
$$v_L(t) = f_0 \left(t - \frac{L}{u}\right) + g_L(t)$$

Transmission Lines: 17 - 11 / 13

Each extra bit of f_0 is

 $g_L(t) = \rho_L f_0 \left(t - \frac{L}{u} \right)$

 $f_0(t) + g_L \left(t - \frac{L}{u}\right)$

 $f_0\left(t-\frac{L}{u}\right)+g_L(t)$

 $f_0(t) =$

 $v_0(t) =$

 $v_L(t) =$

delayed by $\frac{2L}{n}$ (=12 ns)

and multiplied by $\rho_L \rho_0$:

 $\sum_{i=0}^{\infty} \tau_0 \rho_L^i \rho_0^i v_S \left(t - \frac{2Li}{u} \right)$

17: Transmission Lines

- Transmission Lines
- Transmission Line
- Equations

• Solution to Transmission Line Equations

- Forward Wave
- Forward + Backward Waves
- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line
- Characteristics
- Summary

$$\rho_0 = -\frac{2}{3}$$
$$\rho_L = \frac{1}{2}$$
$$v_x = f_x + g_x$$

9

Transmission Lines: 17 - 11 / 13

Each extra bit of f_0 is

 $f_0(t) =$

 $v_0(t) =$

delayed by $\frac{2L}{n}$ (=12 ns)

17: Transmission Lines

- Transmission Lines
- Transmission Line
- Equations

 Solution to Transmission Line Equations

- Forward Wave
- Forward + Backward Waves
- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line
- Characteristics
- Summary

$$\rho_0 = -\frac{2}{3}$$
$$\rho_L = \frac{1}{2}$$
$$v_x = f_x + g_x$$

2

0

5

10

15

$$f_0(t) + g_L \left(t - \frac{L}{u}\right)$$
$$v_L(t) =$$
$$f_0 \left(t - \frac{L}{u}\right) + g_L(t)$$

 $g_L(t) = \rho_L f_0 \left(t - \frac{L}{u} \right)$

E1.1 Analysis of Circuits (2016-8284)

Transmission Lines: 17 – 11 / 13

25

20

30 Time (ns)

Each extra bit of f_0 is

 $g_L(t) = \rho_L f_0 \left(t - \frac{L}{u} \right)$

 $f_0(t) + g_L \left(t - \frac{L}{u}\right)$

 $f_0\left(t-\frac{L}{u}\right)+g_L(t)$

 $f_0(t) =$

 $v_0(t) =$

 $v_L(t) =$

delayed by $\frac{2L}{n}$ (=12 ns)

and multiplied by $\rho_L \rho_0$:

 $\sum_{i=0}^{\infty} \tau_0 \rho_L^i \rho_0^i v_S \left(t - \frac{2Li}{u} \right)$

17: Transmission Lines

- Transmission Lines
- Transmission Line
- Equations

• Solution to Transmission Line Equations

- Forward Wave
- Forward + Backward Waves
- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line
- Characteristics
- Summary

$$\rho_0 = -\frac{1}{3}$$
$$\rho_L = \frac{1}{2}$$
$$v_x = f_x + g_x$$

2

Transmission Lines: 17 - 11 / 13

Transmission Line Characteristics

17: Transmission Lines

- Transmission Lines
- Transmission Line
- Equations

• Solution to Transmission Line Equations

- Forward Wave
- Forward + Backward Waves
- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line
- Characteristics
- Summary

Integrated circuits & Printed circuit boards High speed digital or high frequency analog interconnections $Z_0 \approx 100 \Omega, u \approx 15 \text{ cm/ns.}$

Long Cables

Coaxial cable ("coax"): unaffacted by external fields; use for antennae and instrumentation.

 $Z_0 = 50 \text{ or } 75 \,\Omega$, $u \approx 25 \,\mathrm{cm/ns}$.

Twisted Pairs: cheaper and thinner than coax and resistant to magnetic fields; use for computer network and telephone cabling. $Z_0 \approx 100 \Omega$, $u \approx 19$ cm/ns.

When do you have to bother?

Answer: long cables or high frequencies. You can completely ignore transmission line effects if length $\ll \frac{u}{\text{frequency}} = \text{wavelength}.$

- Audio (< 20 kHz) never matters.
- Computers (1 GHz) usually matters.
- Radio/TV usually matters.

17: Transmission Lines

- Transmission Lines
- Transmission Line
- Equations
- Solution to Transmission Line Equations
- Forward Wave
- Forward + Backward

Waves

- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line
- Characteristics
- Summary

• Signals travel at around $u \approx \frac{1}{2}c = 15$ cm/ns. Only matters for high frequencies or long cables.

17: Transmission Lines

- Transmission Lines
- Transmission Line
- Equations
- Solution to Transmission Line Equations
- Forward Wave
- Forward + Backward Waves
- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line
- Characteristics
- Summary

- Signals travel at around $u \approx \frac{1}{2}c = 15$ cm/ns. Only matters for high frequencies or long cables.
- Forward and backward waves travel along the line:

$$f_x(t) = f_0\left(t - \frac{x}{u}\right)$$
 and $g_x(t) = g_0\left(t + \frac{x}{u}\right)$

17: Transmission Lines

- Transmission Lines
- Transmission Line
- Equations
- Solution to Transmission Line Equations
- Forward Wave
- Forward + Backward Waves
- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line
- Characteristics
- Summary

- Signals travel at around $u \approx \frac{1}{2}c = 15$ cm/ns. Only matters for high frequencies or long cables.
- Forward and backward waves travel along the line:

$$f_x(t) = f_0\left(t - \frac{x}{u}\right)$$
 and $g_x(t) = g_0\left(t + \frac{x}{u}\right)$

17: Transmission Lines

- Transmission Lines
- Transmission Line
- Equations
- Solution to Transmission Line Equations
- Forward Wave
- Forward + Backward Waves
- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line
- Characteristics
- Summary

- Signals travel at around $u \approx \frac{1}{2}c = 15$ cm/ns. Only matters for high frequencies or long cables.
- Forward and backward waves travel along the line:

$$f_x(t) = f_0\left(t - \frac{x}{u}\right)$$
 and $g_x(t) = g_0\left(t + \frac{x}{u}\right)$

• Knowing f_x and g_x at any single x position tells you everything

• Voltage and current are: $v_x = f_x + g_x$ and $i_x = \frac{f_x - g_x}{Z_0}$

17: Transmission Lines

- Transmission Lines
- Transmission Line
- Equations
- Solution to Transmission Line Equations
- Forward Wave
- Forward + Backward Waves
- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line
- Characteristics
- Summary

- Signals travel at around $u \approx \frac{1}{2}c = 15$ cm/ns. Only matters for high frequencies or long cables.
- Forward and backward waves travel along the line:

$$f_x(t) = f_0\left(t - \frac{x}{u}\right)$$
 and $g_x(t) = g_0\left(t + \frac{x}{u}\right)$

- Voltage and current are: $v_x = f_x + g_x$ and $i_x = \frac{f_x g_x}{Z_0}$
- Terminating line with R at x = L links the forward and backward waves:
 - \circ backward wave is $g_L =
 ho_L f_L$ where $ho_L = rac{R-Z_0}{R+Z_0}$

17: Transmission Lines

- Transmission Lines
- Transmission Line
- Equations
- Solution to Transmission Line Equations
- Forward Wave
- Forward + Backward Waves
- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line
- Characteristics
- Summary

- Signals travel at around $u \approx \frac{1}{2}c = 15$ cm/ns. Only matters for high frequencies or long cables.
- Forward and backward waves travel along the line:

$$f_x(t) = f_0\left(t - \frac{x}{u}\right)$$
 and $g_x(t) = g_0\left(t + \frac{x}{u}\right)$

- \circ Knowing f_x and g_x at any single x position tells you everything
- Voltage and current are: $v_x = f_x + g_x$ and $i_x = \frac{f_x g_x}{Z_0}$
- Terminating line with R at x = L links the forward and backward waves:
 - backward wave is $g_L = \rho_L f_L$ where $\rho_L = \frac{R-Z_0}{R+Z_0}$
 - $\circ \;\;$ the reflection coefficient, $\rho_L \in \{-1,+1\}$ and increases with R

17: Transmission Lines

- Transmission Lines
- Transmission Line
- Equations
- Solution to Transmission Line Equations
- Forward Wave
- Forward + Backward Waves
- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line
- Characteristics
- Summary

- Signals travel at around $u \approx \frac{1}{2}c = 15$ cm/ns. Only matters for high frequencies or long cables.
- Forward and backward waves travel along the line:

$$f_x(t) = f_0\left(t - \frac{x}{u}\right)$$
 and $g_x(t) = g_0\left(t + \frac{x}{u}\right)$

- Voltage and current are: $v_x = f_x + g_x$ and $i_x = \frac{f_x g_x}{Z_0}$
- Terminating line with R at x = L links the forward and backward waves:
 - \circ backward wave is $g_L =
 ho_L f_L$ where $ho_L = rac{R-Z_0}{R+Z_0}$
 - \circ the reflection coefficient, $ho_L \in \{-1,+1\}$ and increases with R
 - $R = Z_0$ avoids reflections: *matched* termination.

17: Transmission Lines

- Transmission Lines
- Transmission Line
- Equations
- Solution to Transmission Line Equations
- Forward Wave
- Forward + Backward Waves
- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line
- Characteristics
- Summary

- Signals travel at around $u \approx \frac{1}{2}c = 15$ cm/ns. Only matters for high frequencies or long cables.
- Forward and backward waves travel along the line:

$$f_x(t) = f_0\left(t - \frac{x}{u}\right)$$
 and $g_x(t) = g_0\left(t + \frac{x}{u}\right)$

- Voltage and current are: $v_x = f_x + g_x$ and $i_x = \frac{f_x g_x}{Z_0}$
- Terminating line with R at x = L links the forward and backward waves:
 - backward wave is $g_L = \rho_L f_L$ where $\rho_L = \frac{R-Z_0}{R+Z_0}$
 - \circ $\$ the reflection coefficient, $\rho_L \in \{-1,+1\}$ and increases with R
 - $R = Z_0$ avoids reflections: *matched* termination.
 - Reflections go on for ever unless one or both ends are matched.

17: Transmission Lines

- Transmission Lines
- Transmission Line
- Equations
- Solution to Transmission Line Equations
- Forward Wave
- Forward + Backward Waves
- Power Flow
- Reflections
- Reflection Coefficients
- Driving a line
- Multiple Reflections
- Transmission Line
- Characteristics
- Summary

- Signals travel at around $u \approx \frac{1}{2}c = 15$ cm/ns. Only matters for high frequencies or long cables.
- Forward and backward waves travel along the line:

$$f_x(t) = f_0\left(t - \frac{x}{u}\right)$$
 and $g_x(t) = g_0\left(t + \frac{x}{u}\right)$

- Voltage and current are: $v_x = f_x + g_x$ and $i_x = \frac{f_x g_x}{Z_0}$
- Terminating line with R at x = L links the forward and backward waves:
 - \circ backward wave is $g_L =
 ho_L f_L$ where $ho_L = rac{R-Z_0}{R+Z_0}$
 - \circ $\$ the reflection coefficient, $\rho_L \in \{-1,+1\}$ and increases with R
 - $R = Z_0$ avoids reflections: *matched* termination.
 - Reflections go on for ever unless one or both ends are matched.
 - f is infinite sum of copies of the input signal delayed successively by the round-trip delay, $\frac{2L}{u}$, and multiplied by $\rho_L \rho_0$.