
Keysight Technologies
Fundamentals of Signal Analysis Series
Understanding Dynamic Signal Analysis

Application Note



*  A more rigorous mathematical justiication for the 
arguments developed in the main text can be found in 

Keysight Application Note — The Fourier Transform:  

A Mathematical Background (Appendix A in 5952-8898E)

Introduction

This application note is a primer for those who are unfamiliar with the class of 

analyzers we call dynamic signal analyzers. These instruments are particularly 

appropriate for the analysis of signals in the range of a few millihertz to about  

a hundred kilohertz.

In this note, we avoid using rigorous mathematics and instead depend on  

heuristic arguments. We have found in over a decade of teaching this material  

that such arguments lead to a better understanding of the basic processes 

involved in dynamic signal analysis. Equally important, this heuristic instruction 

leads to better instrument operators who can intelligently use these analyzers 

to solve complicated measurement problems with accuracy and ease.*

In the application note, Introduction to Time, Frequency and Modal Domains, 

literature number 5998-6765EN we introduced the concepts of the time,  

frequency and modal domains and the types of instrumentation available for 

making measurements in each domain. We discussed the advantages and  

disadvantages of each generic instrument type and noted that the dynamic  

signal analyzer has the speed advantages of parallel-ilter analyzers without 
their low-resolution limitations. In addition, it is the only type of analyzer that 

works in all three domains. 

In this application note, we will develop a fuller understanding of dynamic  

signal analyzers. We begin by presenting the properties of the Fast Fourier 

Transform (FFT), upon which dynamic signal analyzers are based. We then 

show how these FFT properties cause some undesirable characteristics in 

spectrum analysis like aliasing and leakage. Having demonstrated a potential 

dificulty with the FFT, we then show what solutions are used to make  
practical dynamic signal analyzers. Developing this basic knowledge of  

FFT characteristics makes it simple to get good results with a dynamic  

signal analyzer in a wide range of measurement problems. 
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The Fast Fourier Transform (FFT) is 

an algorithm* for transforming data 

from the time domain to the frequency 

domain. Since this is exactly what 

we want a spectrum analyzer to do, 

it would seem easy to implement a 

dynamic signal analyzer based on the 

FFT. However, we will see that there 

are many factors that complicate this 

seemingly straightforward task.

First, because of the many calculations  

involved in transforming domains, the 

transform must be performed on a 

computer if the results are to be sufi-

ciently accurate. Fortunately, with the 

advent of microprocessors, it is easy 

and inexpensive to incorporate all the 

needed computing power in a small 

instrument package. Note, however, 

that we cannot now transform to the 

frequency domain in a continuous 

manner, but instead must sample and 

digitize the time domain input. This 

means that our algorithm transforms 

digitized samples from the time 

domain to samples in the frequency 

domain as shown in Figure 1.1.**

Because we have sampled, we no 

longer have an exact representation 

in either domain. However, a sampled 

representation can be as close to ideal 

as we desire by placing our samples 

closer together. Later, we will consider 

what sample spacing is necessary to 

guarantee accurate results.

Section 1: FFT Properties

Figure 1.1. The FFT samples in both the time and frequency domains

Figure 1.2. A time record is N equally spaced samples of the input.

*  An algorithm is any special mathematical 
method of solving a certain kind of problem;  
e.g., the technique you use to balance your 
checkbook.

** To reduce confusion about which domain 
we are in, samples in the frequency domain 
are called lines.
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Time Records

A time record is deined to be N 
consecutive, equally spaced samples 

of the input. Because it makes our 

transform algorithm simpler and much 

faster, N is restricted to be a multiple 

of 2, for instance 1024.

As shown in Figure 1.3, this time 

record is transformed as a complete 

block into a complete block of fre-

quency lines. All the samples of the 

time record are needed to compute 

each and every line in the frequency 

domain. This is in contrast to what one 

might expect, namely that a single 

time domain sample transforms to 

exactly one frequency domain line. 

Under-standing this block processing  

property of the FFT is crucial to  

understanding many of the properties 

of the dynamic signal analyzer.

For instance, because the FFT trans-

forms the entire time record block as a 

total, there cannot be valid frequency 

domain results until a complete time 

record has been gathered. However, 

once completed, the oldest sample 

could be discarded, all the samples 

shifted in the time record, and a new 

sample added to the end of the time 

record as in Figure 1.4. Thus, once the 

time record is initially illed, we have a 
new time record at every time domain 

sample and therefore could have new 

valid results in the frequency domain 

at every time domain sample.

When a signal is irst applied to a 
parallel-ilter analyzer, we must wait 
for the ilters to respond, then we 
can see very rapid changes in the 

frequency domain. With a dynamic 

signal analyzer we do not get a valid 

result until a full time record has been 

gathered. Then rapid changes in the 

spectra can be seen.

It should be noted here that a new 

spectrum every sample is usually too 

much information, too fast. This would 

often give you thousands of trans-

forms per second. In later sections 

on real-time bandwidth and overlap 

processing, we discuss just how fast 

a dynamic signal analyzer should 

transform.

Figure 1.3. The FFT works on blocks of data. Figure 1.4. A new time record every sample after the time record is illed
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How Many Lines are There?

We stated earlier that the time  

record has N equally spaced samples. 

Another property of the FFT is that it  

transforms these time domain samples  

to N/2 equally spaced lines in the 

frequency domain. We only get half as 

many lines because each frequency 

line actually contains two pieces of 

information, amplitude and phase. The 

meaning of this is most easily seen if 

we look again at the relationship  

between the time and frequency 

domain.

Figure 1.5 shows a three-dimensional 

graph of this relationship. Up to now, 

we have implied that the amplitude 

and frequency of the sine waves 

contains all the information necessary 

to reconstruct the input. But it should 

be obvious that the phase of each of 

these sine waves is important too. 

For instance, in Figure 1.6, we have 

shifted the phase of the higher fre-

quency sine wave components of this 

signal. The result is a severe distortion 

of the original waveform.

We have not discussed the phase 

information contained in the spectrum 

of signals until now because none of 

the traditional spectrum analyzers  

are capable of measuring phase.  

In Keysight Application Note "The  

Fundamentals of Signal Analysis" — 

Chapter 4: Using Dynamic Signal 

Analyzers, you will see that phase 

contains valuable information in 

determining the cause of performance 

problems.

Figure 1.5. The relationship between the time and frequency domains

Figure 1.6. Phase of frequency domain components is important.
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What is the Spacing of  
the Lines?

Now that we know that we have N/2 

equally spaced lines in the frequency 

domain, what is their spacing? The 

lowest frequency that we can resolve 

with our FFT spectrum analyzer must 

be based on the length of the time 

record. We can see in Figure 1.7 that 

if the period of the input signal is 

longer than the time record, we have 

no way of determining the period (or 

frequency, its reciprocal). Therefore, 

the lowest frequency line of the FFT 

must occur at frequency equal to the 

reciprocal of the time record length.

In addition, there is a frequency line 

at zero Hertz, dc. This is merely the 

average of the input over the time 

record. It is rarely used in spectrum 

or network analysis. But, we have 

now established the spacing between 

these two lines and hence every line;  

it is the reciprocal of the time record.

What is the Frequency Range 
of the FFT?

We can now quickly determine that the  

highest frequency we can measure is: 

            
N

          
1

fmax =  ——  (——————————————————— ) 
            

2
        

Period of Time Record

because we have N/2 lines spaced  

by the reciprocal of the time record 

starting at zero Hertz.*

Since we would like to adjust the 

frequency range of our measurement, 

we must vary fmax. The number of time 

samples N is ixed by the implementa-

tion of the FFT algorithm. Therefore, we 

must vary the period of the time record 

to vary fmax. To do this, we must vary 

the sample rate so that we always have 

N samples in our variable time record 

period. This is illustrated in Figure 1.9. 

Notice that to cover higher frequencies, 

we must sample faster. 

Figure 1.8. Frequencies of all the spectral lines of the FFT

Figure 1.9. Frequency range of dynamic signal analyzers is determined by 

sample rate.

*  The usefulness of this frequency range  
can be limited by the problem of aliasing.  
Aliasing is discussed in Section 3.

Figure 1.7. Lowest frequency resolvable by the FFT
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Section 2:* Sampling and Digitizing

Recall that the input to our dynamic 

signal analyzer is a continuous analog 

voltage. This voltage might be from  

an electronic circuit or it could be the 

output of a transducer and be propor-

tional to current, power, pressure,  

acceleration or any number of other 

inputs. Recall also that the FFT  

requires digitized samples of the input 

for its digital calculations. Therefore,  

we need to add a sampler and analog-

to-digital converter (ADC) to our 

FFT processor to make a spectrum 

analyzer. We show this basic block 

diagram in Figure 2.1.

For the analyzer to have the high 

accuracy needed for many measure-

ments, the sampler and ADC must be 

quite good. The sampler must sample 

the input at exactly the correct time 

and must accurately hold the input 

voltage measured at this time until 

the ADC has inished its conversion. 
The ADC must have high resolution and 

linearity. For 70 dB of dynamic range  

the ADC must have at least 12 bits  

of resolution and one half least- 

signiicant-bit linearity.

A good digital multimeter (DMM) will 

typically exceed these speciications, 
but the ADC for a dynamic signal ana-

lyzer must be much faster than typical 

fast DMMs. A fast DMM might take 

a thousand readings per second, but 

in a typical dynamic signal analyzer 

the ADC must take at least a hundred 

thousand readings per second.

*  You can skip this section and the next if you 
are not interested in the internal operation 
of a dynamic signal analyzer. However, if 
you specify the purchase of dynamic signal 
analyzers, you are especially encouraged to  
read these sections. The basic knowledge 
you gain from these sections can insure 
you specify the best analyzer for your 
requirements.

Figure 2.1. Block diagram of a dynamic signal analyzer

Figure 2.2. The sampler and ADC must not introduce errors.
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The reason an FFT spectrum analyzer 

needs so many samples per second  

is to avoid a problem called aliasing.  

Aliasing is a potential problem in any 

sampled data system. It is often  

overlooked, sometimes with  

disastrous results.

A Simple Data Logging  
Example of Aliasing

Let us look at a simple data logging 

example to see what aliasing is and 

how it can be avoided. Consider the 

example for recording temperature 

shown in Figure 3.1. A thermocouple is 

connected to a digital voltmeter that 

is in turn connected to a printer. The 

system is set up to print the tem-

perature every second. What would 

we expect for an output? If we were 

measuring the temperature of a room 

that only changes slowly, we would 

expect every reading to be almost the 

same as the previous one. In fact, we 

are sampling much more often than 

necessary to determine the tem-

perature of the room with time. If we 

plotted the results of this “thought 

experiment,” we would expect to see 

results like Figure 3.2.

The Case of the Missing  
Temperature

If, on the other hand, we were measur-

ing the temperature of a small part 

that could heat and cool rapidly, what 

would the output be? Suppose that 

the temperature of our part cycled 

exactly once every second. As shown 

in Figure 3.3, our printout says that 

the temperature never changes.

What has happened is that we have 

sampled at exactly the same point on 

our periodic temperature cycle with 

every sample. We have not sampled 

fast enough to see the temperature 

luctuations.

Section 3: Aliasing

Figure 3.1. A simple sampled data system

Figure 3.3. Plot of temperature variation of a small part

Figure 3.2. Plot of temperature variation of a room

Thermocouple PrinterDigital
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Time
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Aliasing in the Frequency 
Domain

This completely erroneous result is 

due to a phenomena called aliasing.* 

Aliasing is shown in the frequency 

domain in Figure 3.4. Two signals are 

said to alias if the difference of their 

frequencies falls in the frequency 

range of interest. This difference 

frequency is always generated in the 

process of sampling. In Figure 3.4, the 

input frequency is slightly higher than 

the sampling frequency so a low fre-

quency alias term is generated. If the 

input frequency equals the sampling 

frequency as in our small part example,  

then the alias term falls at DC (zero 

Hertz) and we get the constant output 

that we saw above.

Aliasing is not always bad. It is called 

mixing or heterodyning in analog  

electronics, and is commonly used for 

tuning household radios and televisions  

as well as many other communication  

products. However, in the case of the 

missing temperature variation of our 

small part, we deinitely have a prob-

lem. How can we guarantee that we 

will avoid this problem in a  

measurement situation?

Figure 3.5 shows that if we sample at 

greater than twice the highest fre-

quency of our input, the alias products 

will not fall within the frequency range 

of our input. Therefore, a ilter (or our 
FFT processor, which acts like a ilter) 
after the sampler will remove the alias 

products while passing the desired in-

put signals if the sample rate is greater 

than twice the highest frequency of the 

input. If the sample rate is lower, the 

alias products will fall in the frequency 

range of the input and no amount of 

iltering will be able to remove them 
from the signal.

This minimum sample rate require-

ment is known as the Nyquist Criterion.  

It is easy to see in the time domain 

that a sampling frequency exactly 

twice the input frequency would not 

always be enough. It is less obvious 

that slightly more than two samples in 

each period is suficient information.  

It certainly would not be enough to 

give a high-quality time display. Yet 

we saw in Figure 3.5 that meeting the 

Nyquist Criterion of a sample rate 

greater than twice the maximum input 

frequency is suficient to avoid aliasing 
and preserve all the information in the 

input signal. 

*  Aliasing is also known as fold-over or mixing.

Figure 3.4. The problem of aliasing viewed in the frequency domain

Figure 3.5. A frequency domain view of how to avoid aliasing - sample at greater than twice the  

highest input frequency

Figure 3.6. Nyquist Criterion in the time domain
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The Need for an Anti-Alias 
Filter

Unfortunately, the real world rarely 

restricts the frequency range of 

its signals. In the case of the room 

temperature, we can be reasonably 

sure of the maximum rate at which the 

temperature could change, but we still 

can not rule out stray signals. Signals 

induced at the power-line frequency 

or even local radio stations could alias 

into the desired frequency range. The 

only way to be really certain that the 

input frequency range is limited is  

to add a low pass ilter before the 
sampler and ADC. Such a ilter is 
called an anti-alias ilter. 

An ideal anti-alias ilter would look 
like Figure 3.7a. It would pass all the 

desired input frequencies with no 

loss and completely reject any higher 

frequencies which otherwise could 

alias into the input frequency range. 

However, it is not even theoretically 

possible to build such a ilter, much 
less practical. Instead, all real ilters 
look something like Figure 3.7b with a 

gradual roll off and inite rejection of 
undesired signals. Large input signals 

that are not well attenuated in the 

transition band could still alias into 

the desired input frequency range. To 

avoid this, the sampling frequency is 

raised to twice the highest frequency 

of the transition band. This guarantees 

that any signals that could alias are 

well attentuated by the stop band of 

the ilter. Typically, this means that the 
sample rate is now two-and-a-half to 

four times the maximum desired input 

frequency. Therefore, a 25 kHz FFT 

spectrum analyzer can require an  

ADC that runs at 100 kHz.* 

The Need for More  
Than One Anti-Alias Filter

You may recall from Section 1 that 

due to the properties of the FFT, we 

must vary the sample rate to vary the 

frequency span of our analyzer. To 

reduce the frequency span, we must 

reduce the sample rate. From our 

considerations of aliasing, we now 

realize that we must also reduce the 

anti-alias ilter frequency by the same 
amount.

Since a dynamic signal analyzer is a 

very versatile instrument used in a 

wide range of applications, it is desir-

able to have a wide range of frequency 

spans available. Typical instruments 

have a minimum span of 1 Hertz and 

a maximum of tens to hundreds of 

kilohertz. This four-decade range typi-

cally needs to be covered with at least 

three spans per decade. This would 

mean at least twelve anti-alias ilters 
would be required for each channel.

Each of these ilters must have very 
good performance. Their transition 

bands should be as narrow as pos-

sible, so that as many lines as possible 

are free from alias products. Addition-

ally, in a two-channel analyzer, each 

ilter pair must be well matched for 
accurate network analysis measure-

ments. These two points, unfortu-

nately, mean that each of the ilters 
is expensive. Taken together they 

can add signiicantly to the price of 
the analyzer. To cut expenses, some 

manufacturers don’t use a low enough 

frequency anti-alias ilter on the 
lowest-frequency spans. (The lowest 

frequency ilters cost the most of all.) 
But as we have seen, this can lead to 

problems like our “case of the missing 

temperature.”

Figure 3.7. Actual anti-alias ilters require higher sampling frequencies.

*  Unfortunately, because the spacing of the 
FFT lines depends on the sample rate, 
increasing the sample rate decreases the 
number of lines that are in the desired fre-
quency range. Therefore, to avoid aliasing 
problems dynamic signal analyzers have 
only .25N to .4N lines instead of N/2 lines.

Frequency

Frequency

Transition band

a) “Ideal” anti-aliasing filter

b) Real anti-aliasing filter
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Digital Filtering

Fortunately, there is an alternative  

that is cheaper, and when used in  

conjunction with a single analog anti-

alias ilter, always provides aliasing 
protection. It is called “digital iltering,”  
because it ilters the input signal after 
we have sampled and digitized it. 

To see how this works, let us look at 

Figure 3.8.

In the analog case we already dis-

cussed, we had to use a new ilter 
every time we changed the sample 

rate of the analog-to-digital converter 

(ADC). For digital iltering, the ADC 
sample rate is left constant at the 

rate needed for the highest-frequency 

span of the analyzer. This means we 

need not change our anti-alias ilter. 
To get the reduced sample rate and 

iltering we need for the narrower  
frequency spans, we follow the ADC 

with a digital ilter.

This digital ilter is known as a 
decimating ilter. It not only ilters the 
digital representation of the signal to 

the desired frequency span, it also 

reduces the sample rate at its output 

to the rate needed for that frequency 

span. Because this ilter is digital, 
there are no manufacturing variations, 

aging or drift in the ilter. Therefore, in 
a two-channel analyzer, the ilters in 
each channel are identical. It is easy to 

design a single digital ilter to work on 
many frequency spans so the need for 

multiple ilters per channel is avoided. 
All these factors taken together mean 

that digital iltering is much less 
expensive than analog anti-aliasing 

iltering.

Figure 3.8. Block diagrams of analog and digital iltering
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Section 4: Band-Selectable Analysis

Suppose we need to measure a small 

signal that is very close in frequency 

to a large one. We might be measuring  

the power-line side-bands (50 or 60 Hz)  

on a 20 kHz oscillator. Or we might 

want to distinguish between the stator 

vibration and the shaft imbalance in 

the spectrum of a motor.*

Recall from our discussion of the  

properties of the Fast Fourier Transform  

that it is equivalent to a set of ilters, 
starting at zero Hertz, equally spaced 

up to some maximum frequency. 

Therefore, our frequency resolution 

is limited to the maximum frequency 

divided by the number of ilters.

To just resolve the 60 Hz sidebands 

on a 20 kHz oscillator signal would 

require 333 lines (or ilters) of the FFT. 
Two or three times more lines would 

be required to accurately measure the 

sidebands. But typical dynamic signal 

analyzers only have 200 to 400 lines, 

not enough for accurate measure-

ments. To increase the number of lines 

would greatly increase the cost of the 

analyzer. If we chose to pay the extra 

cost, we would still have trouble see-

ing the results. With a 4-inch (10 cm) 

screen, the sidebands would be only 

0.01 inch (.25 mm) from the carrier.

A better way to solve this problem 

is to concentrate the ilters into the 
frequency range of interest as in 

Figure 4.1. If we select the minimum 

frequency as well as the maximum fre-

quency of our ilters we can “zoom in” 
for a high resolution close-up shot of 

our frequency spectrum. We now have 

the capability of looking at the entire 

spectrum at once with low resolution, 

as well as the ability to look at what 

interests us with much higher  

resolution.

This capability of increased resolution  

is called band-selectable analysis 

(BSA).** It is done by mixing or hetero-

dyning the input signal down into the 

range of the FFT span selected. This 

technique, familiar to electronic engi-

neers, is the process by which radios 

and televisions tune in stations.

The primary difference between the 

implementation of BSA in dynamic 

signal analyzers and heterodyne  

radios is shown in Figure 4.2. In a 

radio, the sine wave used for mixing is 

an analog voltage. In a dynamic signal 

analyzer, the mixing is done after the 

input has been digitized, so the “sine 

wave” is a series of digital numbers 

into a digital multiplier. This means 

that the mixing will be done with a 

very accurate and stable digital signal 

so our high-resolution display will  

likewise be very stable and accurate.

Figure 4.1. High-resolution measurements with band-selectable analysis

Figure 4.2. Analyzer block diagram

FFT filter spacing

Band selectable analysis

Fmax0 Hz

fmaxfmin
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Sampler
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Digital
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Cosine
(digital)

Display
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*  The shaft of an ac induction motor always 
runs at a rate slightly lower than a multiple 
of the driven frequency, an effect called 
slippage. 

** Also sometimes called “zoom.”
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Section 5: Windowing

The Need for Windowing

There is another property of the Fast 

Fourier Transform that affects its use in 

frequency domain analysis. We recall 

that the FFT computes the frequency 

spectrum from a block of samples 

of the input called a time record. In 

addition, the FFT algorithm is based 

upon the assumption that this time 

record is repeated throughout time, 

as illustrated in Figure 5.1. 

This does not cause a problem with  

the transient case shown. But what 

happens if we are measuring a con-

tinuous signal like a sine wave? If the 

time record contains an integral  

number of cycles of the input sine 

wave, then this assumption exactly 

matches the actual input waveform as 

shown in Figure 5.2. In this case, the 

input waveform is said to be periodic 

in the time record. 

Figure 5.3 demonstrates the dificulty 
with this assumption when the input is 

not periodic in the time record. The FFT 

algorithm is computed on the basis  

of the highly distorted waveform in  

Figure 5.3c. We know from Chapter 2  

that the actual sine wave input has a 

frequency spectrum of single line. The 

spectrum of the input assumed by  

the FFT in Figure 5.3c should be very 

different. Since sharp phenomena 

in one domain are spread out in the 

other domain, we would expect the 

spectrum of our sine wave to be spread 

out through the frequency domain.

Figure 5.1. FFT assumption — time record repeated throughout all time

Figure 5.2. Input signal periodic in time record

Figure 5.3. Input signal not periodic in time record

a) Actual input

b) Time record

c) Assumed input

a) Actual input

b) Time record
(integral number
of cylcles in
time record)

c) Assumed  input
(matches actual
input)

a) Actual input

b) Time record

c) Assumed input



15

In Figure 5.4 we see in an actual 

measurement that our expectations are 

correct. In Figures 5.4a and b, we see 

a sine wave that is periodic in the time 

record. Its frequency spectrum is a 

single line whose width is determined 

only by the resolution of our dynamic 

signal analyzer. On the other hand, 

Figures 5.4c and d show a sine wave 

that is not periodic in the time record. 

Its power has been spread throughout 

the spectrum as we predicted.

This smearing of energy through-out 

the frequency domains is a phenomena  

known as leakage. We are seeing en-

ergy leak out of one resolution line of 

the FFT into all the other lines.

It is important to realize that leakage 

is due to the fact that we have taken 

a inite time record. For a sine wave 
to have a single line spectrum, it must 

exist for all time, from minus ininity 
to plus ininity. If we were to have an 
ininite time record, the FFT would 
compute the correct single line spec-

trum exactly. However, since we are 

not willing to wait forever to measure 

its spectrum, we only look at a inite 
time record of the sine wave. This can 

cause leakage if the continuous input 

is not periodic in the time record.

It is obvious from Figure 5.4 that the 

problem of leakage is severe enough 

to entirely mask small signals close 

to our sine waves. As such, the FFT 

would not be a very useful spectrum 

analyzer. The solution to this problem 

is known as windowing. The problems 

of leakage and how to solve them with 

windowing can be the most confusing 

concepts of dynamic signal analysis. 

Therefore, we will now carefully  

develop the problem and its solution 

in several representative cases.

a) and b) Sine wave periodic in time record

c) and d) Sine wave not periodic in time record

Figure 5.4. Actual FFT results

a) b) 

c) d) 
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What is Windowing?

In Figure 5.5 we have again reproduced  

the assumed input wave form of a 

sine wave that is not periodic in the 

time record. Notice that most of the 

problem seems to be at the edges of 

the time record; the center is a good 

sine wave. If the FFT could be made 

to ignore the ends and concentrate 

on the middle of the time record, we 

would expect to get much closer to 

the correct single-line spectrum in the 

frequency domain.

If we multiply our time record by a 

function that is zero at the ends of the 

time record and large in the middle, 

we would concentrate the FFT on the 

middle of the time record. One such 

function is shown in Figure 5.5c. Such 

functions are called window functions 

because they force us to look at data 

through a narrow window.

Figure 5.6 shows us the vast improve-

ment we get by windowing data that 

is not periodic in the time record. 

However, it is important to realize that 

we have tampered with the input data 

and cannot expect perfect results.  

The FFT assumes the input looks like 

Figure 5.5d, something like an ampli-

tude-modulated sine wave. This has a 

frequency spectrum which is closer to 

the correct single line of the input sine 

wave than Figure 5.5b, but it still is not 

correct. Figure 5.7 demonstrates that 

the windowed data does not have as 

narrow a spectrum as an unwindowed 

function which is periodic in the time 

record.

Figure 5.5. The effect of windowing in the time domain

c) FFT results with a window function

Figure 5.6. Leakage reduction with windowing

a) Sine wave not periodic in time record b) FFT results with no window function

a) Actual input

c) Windowed function

d) Windowed input

b) Assumed input

Time
record
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The Hanning Window

Any number of functions can be used 

to window the data, but the most 

common one is called Hanning. We 

actually used the Hanning window in 

Figure 5.6 as our example of leakage  

reduction with windowing. The 

Hanning window is also commonly 

used when measuring random noise.

The Uniform Window*

We have seen that the Hanning window  

does an acceptably good job on our 

sine wave examples, both periodic and 

non-periodic in the time record. If this 

is true, why should we want any other 

windows?

Suppose that instead of wanting the 

frequency spectrum of a continuous 

signal, we would like the spectrum of 

a transient event. A typical transient is 

shown in Figure 5.8a. If we multiplied 

it by the window function in Figure 

5.8b we would get the highly distorted 

signal shown in Figure 5.8c. The 

frequency spectrum of an actual tran-

sient with and without the Hanning 

window is shown in Figure 5.9. The 

Hanning window has taken our 

transient, which naturally has energy 

spread widely through the frequency 

domain and made it look more like a 

sine wave.

Therefore, we can see that for 

transients we do not want to use the 

Hanning window. We would like to use 

all the data in the time record equally 

or uniformly. Hence we will use a  

uniform window which weights all  

of the time record uniformly.

The case we made for the uniform 

window by looking at transients can 

be generalized. Notice that our tran-

sient has the property that it is zero 

at the beginning and end of the time 

record. Remember that we introduced 

windowing to force the input to be 

zero at the ends of the time record.  

In this case, there is no need for  

windowing the input. Any function like 

this which does not require a window  

because it occurs completely within 

the time record is called a self-

windowing function. Self-windowing 

functions generate no leakage in the 

FFT and so need no window. 

Figure 5.8. Windowing loses information from transient events.

a) Unwindowed transients b) Hanning windowed transients

*  The uniform window is sometimes referred 
to as a “rectangular window.”

Figure 5.9. Spectrums of transients

a) Transient input

b) Hanning window

c) Windowed transient

Time
record

a) Leakage-free measurement — input periodic 

in time record

b) Windowed measurement — input not periodic 

in time record

Figure 5.7. Windowing reduces leakage but does not eliminate it.
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There are many examples of self-

windowing functions, some of which 

are shown in Figure 5.10. Impacts, 

impulses, shock responses, sine 

bursts, noise bursts, chirp bursts and 

pseudo-random noise can all be made 

to be self-windowing. Self-windowing 

functions are often used as the ex-

citation in measuring the frequency 

response of networks, particularly 

if the network has lightly-damped 

resonances (high Q). This is because 

the self-windowing functions gener-

ate no leakage in the FFT. Recall that 

even with the Hanning window, some 

leakage was present when the signal 

was not periodic in the time record. 

This means that without a self-win-

dowing excitation, energy could leak 

from a lightly damped resonance into 

adjacent lines (ilters). The resulting 
spectrum would show greater  

damping than actually exists.*

The Flat-top Window

We have shown that we need a 

uniform window for analyzing self-

windowing functions like transients.  

In addition, we need a Hanning  

window for measuring noise and  

periodic signals like sine waves.

We now need to introduce a third 

window function, the flat-top window, 

to avoid a subtle effect of the Hanning 

window. To understand this effect, we 

need to look at the Hanning window 

in the frequency domain. We recall 

that the FFT acts like a set of parallel 

ilters. Figure 5.11 shows the shape of 
those ilters when the Hanning  
window is used. Notice that the 

Hanning function gives the ilter a very 
rounded top. If a component of the 

input signal is centered in the ilter it 
will be measured accurately.**  

Otherwise, the ilter shape will  
attenuate the component by up to  

1.5 dB (16 percent) when it falls  

midway between the ilters.

This error is unacceptably large if we 

are trying to measure a signal’s am-

plitude accurately. The solution is to 

choose a window function which gives 

the ilter a latter passband. Such a 
lat-top passband shape is shown in 
Figure 5.12. The amplitude error from 

this window function does not exceed 

0.1 dB (1%), a 1.4 dB improvement.

The accuracy improvement does 

not come without its price, however. 

Figure 5.13 shows that we have lat-
tened the top of the passband at the 

expense of widening the skirts of the 

ilter. We therefore lose some ability 
to resolve a small component, closely 

*  There is another way to avoid this problem 
using band-selectable analysis. We illustrate 
this in Keysight Application Note 1405-3.

** It will, in fact, be periodic in the time record.

Figure 5.12. Flat-top passband shapes

Figure 5.13. Reduced resolution of the lat-top window

Figure 5.11. Hanning passband shapes

Figure 5.10. Self-windowing function examples

0.1 dB

Hanning

Flat top

1.5 dB

Impulse Shock response

Sine burst

Noise burst

Chip burst
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spaced to a large one. Some dynamic 

signal analyzers offer both Hanning 

and lat-top window functions so that 
the operator can choose between 

increased accuracy or improved  

frequency resolution.

Other Window Functions

Many other window functions are 

possible but the three listed above are 

by far the most common for general 

measurements. For special measure-

ment situations other groups of win-

dow functions may be useful. We  

will discuss two windows that are  

particularly useful when doing  

network analysis on mechanical  

structures by impact testing. 

The Force and Response 
Windows

A hammer equipped with a force 

transducer is commonly used to 

stimulate a structure for response 

measurements. Typically the force 

input is connected to one channel of 

the analyzer and the response of the 

structure from another transducer 

is connected to the second channel. 

This force impact is obviously a self-

windowing function. The response of 

the structure is also self-windowing 

if it dies out within the time record of 

the analyzer. To guarantee that the 

response does go to zero by the end 

of the time record, an exponential-

weighted window called a response 

window is sometimes added. Figure 

5.14 shows a response window acting 

on the response of a lightly damped 

structure which did not fully decay 

by the end of the time record. Notice 

that unlike the Hanning window, the 

response window is not zero at both 

ends of the time record. We know 

that the response of the structure will 

be zero at the beginning of the time 

record (before the hammer blow) so 

there is no need for the window func-

tion to be zero there. In addition, most 

of the information about the structural 

response is contained at the beginning 

of the time record so we make sure 

that this is weighted most heavily by 

our response window function.

The time record of the exciting force 

should be just the impact with the 

structure. However, movement of the 

hammer before and after hitting the 

structure can cause stray signals in 

the time record. One way to avoid 

this is to use a force window shown 

in Figure 5.15. The force window is 

unity where the impact data is valid 

and zero everywhere else so that the 

analyzer does not measure any stray 

noise that might be present. 

Passband Shapes or Window 
Functions?

In the proceeding discussion we 

sometimes talked about window 

functions in the time domain. At other 

times we talked about the ilter pass-

band shape in the frequency domain 

caused by these windows. We change 

our perspective freely to whichever 

domain yields the simplest explana-

tion. Likewise, some dynamic signal 

analyzers call the uniform, Hanning 

and lat-top functions “windows” and 
other analyzers call those functions 

“pass-band shapes.” Use whichever 

terminology is easier for the problem  

at hand, as they are completely 

interchangeable, just as the time and 

frequency domains are completely 

equivalent.

Figure 5.14. Using the response window

Figure 5.15. Using the force window

a) Transient does not
die out in time record

b) Response window
(exponential)

c) Windowed response
dies out in time record

a) Impact time record
with stray signals

b) Force window

c) Windowed impact
(stray signals
eliminated)
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We can measure the frequency 

response at one frequency by stimu-

lating the network with a single sine 

wave and measuring the gain and 

phase shift at that frequency. The 

frequency of the stimulus is then 

changed and the measurement 

repeated until all desired frequencies 

have been measured. Every time the 

frequency is changed, the network re-

sponse must settle to its steady-state 

value before a new measurement can 

be taken, making this measurement 

process a slow task.

Many network analyzers operate in 

this manner and we can make the 

measurement this way with a two-

channel dynamic signal analyzer. We 

set the sine wave source to the center 

of the irst ilter as in Figure 6.1. The 
analyzer then measures the gain and 

phase of the network at this frequency 

while the rest of the analyzer’s ilters 
measure only noise. We then increase 

the source frequency to the next ilter 
center, wait for the network to settle 

and then measure the gain and phase. 

We continue this procedure until we 

have measured the gain and phase of 

the network at all the frequencies of 

the ilters in our analyzer.

This procedure would, within experi-

mental error, give us the same results 

as we would get with any of the  

network analyzers described in 

Keysight Application Note, with any 

network, linear or nonlinear.

Noise as a Stimulus

A single sine wave stimulus does not 

take advantage of the possible speed 

the parallel ilters of a dynamic signal 
analyzer provide. If we had a source 

that put out multiple sine waves, each 

one centered in a ilter, then we could 
measure the frequency response at 

all frequencies at one time. Such a 

source, shown in Figure 6.2, acts like 

hundreds of sine wave generators con-

nected together. Although this sounds 

very expensive, just such a source 

can be easily generated digitally. It 

is called a pseudo-random noise or 

periodic random noise source. 

From the names used for this source it 

is apparent that it acts somewhat like 

a true noise generator, except that it 

has periodicity. If we add together a 

large number of sine waves, the result 

is very much like white noise. A good 

analogy is the sound of rain. A single 

drop of water makes a quite distinc-

tive splashing sound, but a rain storm 

sounds like white noise. However, if  

we add together a large number of 

sine waves, our noise-like signal will 

periodically repeat its sequence. 

Hence, the name periodic random 

noise (PRN) source.

Section 6: Network Stimulus

Figure 6.1. Frequency response measurements with a sine wave stimulus

Figure 6.2. Pseudo-random noise as a stimulus

Stimulus

Analyzer

Frequency

Frequency

Stimulus

Analyzer

Frequency

Frequency
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A truly random noise source has a 

spectrum shown in Figure 6.3. It is 

apparent that a random noise source 

would also stimulate all the ilters at 
one time and so could be used as a 

network stimulus. Which is a better 

stimulus? The answer depends upon 

the measurement situation.

Linear Network Analysis

If the network is reasonably linear, 

PRN and random noise both give the 

same results as the swept-sine test 

of other analyzers. But PRN gives the 

frequency response much faster. PRN 

can be used to measure the frequency 

response in a single time record. Be-

cause the random source is true noise, 

it must be averaged for several time 

records before an accurate frequency 

response can be determined. There-

fore, PRN is the best stimulus to use 

with fairly linear networks because it 

gives the fastest results.*

Non-Linear Network Analysis

If the network is severely non-linear, 

the situation is quite different. In this 

case, PRN is a very poor test signal 

and random noise is much better. To 

see why, let us look at just two of the 

sine waves that compose the PRN 

source. We see in Figure 6.4 that if 

two sine waves are put through a non-

linear network, distortion products will 

be generated equally spaced from the 

signals.** Unfortunately, these prod-

ucts will fall exactly on the frequencies 

of the other sine waves in the PRN. 

So the distortion products add to the 

output and therefore interfere with 

the measurement of the frequency 

response. Figure 6.5a shows the  

jagged response of a nonlinear net-

work measured with PRN. Because 

the PRN source repeats itself exactly 

every time record, this noisy-looking 

trace never changes and will not 

average to the desired frequency 

response.

With random noise, the distortion 

components are also random and will 

average out. Therefore, the frequency 

response does not include the distor-

tion and we get the more reasonable 

results shown in Figure 6.5b.

This points out a fundamental problem 

with measuring non-linear networks; 

the frequency response is not a property  

of the network alone, it also depends on 

the stimulus. Each stimulus, swept-sine,  

PRN and random noise will, in general, 

give a different result. Also, if the 

amplitude of the stimulus is changed, 

you will get a different result.

Figure 6.3. Random noise as a stimulus Figure 6.4. Pseudo-random noise distortion

*  There is another reason why PRN is a 
better test signal than random or linear 
networks. Recall from the last section 
that PRN is self-windowing. This means 
that unlike random noise, pseudo-random 
noise has no leakage. Therefore, with PRN, 
we can measure lightly damped (high Q) 
resonances more easily than with random 
noise.

** This distortion is called intermodulation 
distortion.

a) Pseudo-random noise stimulus b) Random noise stimulus

Figure 6.5. Nonlinear transfer function

Stimulus

Analyzer

Frequency

Frequency

PRN 
stimulus

Non-linear
output

Distortion
products

a) Intermodulation distortion (IM)

b) IM with
periodic noise

f1 f2

∆f

∆f
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To illustrate this, consider the mass-

spring system with stops that we  

used in Keysight Application Note 

Introduction to Time, Frequency and 

Modal Domains. If the mass does not 

hit the stops, the system is linear and 

the frequency response is given by 

Figure 6.6a.

If the mass does hit the stops, the 

output is clipped and a large number 

of distortion components are gener-

ated. As the output approaches a 

square wave, the fundamental com-

ponent becomes constant. Therefore, 

as we increase the input amplitude, 

the gain of the network drops. We get 

a frequency response like Figure 6.6b, 

where the gain is dependent on the 

input signal amplitude. 

So, as we have seen, the frequency 

response of a nonlinear network is 

not well deined, i.e., it depends on 
the stimulus. Yet it is often used in 

spite of this. The frequency response 

of linear networks has proven to be 

a very powerful too, and so naturally 

people have tried to extend it to non-

linear analysis, particularly since other 

nonlinear analysis tools have proved 

intractable.

If every stimulus yields a different 

frequency response, which one should 

we use? The “best” stimulus could be 

considered to be one that approxi-

mates the kind of signals you would 

expect to have as normal inputs to the 

network. Since any large collection 

of signals begins to look like noise, 

noise is a good test signal.* As we 

have already explained, noise is also a 

good test signal because it speeds the 

analysis by exciting all the ilters of our 
analyzer simultaneously.

But many other test signals can be 

used with dynamic signal analyzers 

and are “best” (optimum) in other 

senses. As explained in the beginning 

of this section, sine waves can be used 

to give the same results as other types 

of network analyzers although the 

speed advantage of the dynamic signal  

analyzer is lost. A fast sine sweep 

(chirp) will give very similar results 

with all the speed of dynamic signal 

analysis, and so is a better test signal. 

An impulse is a good test signal for 

acoustical testing if the network is 

linear. It is good for acoustics because 

relections from surfaces at different 
distances can easily be isolated or 

eliminated if desired. For instance, by 

using the “force” window described 

earlier, it is easy to get the free ield 
response of a speaker by eliminating 

the room relections from the  
windowed time record.

Band-Limited Noise

Before leaving the subject of network 

stimulus, it is appropriate to discuss 

the need to band limit the stimulus. 

We want all the power of the stimulus 

to be concentrated in the frequency 

region we are analyzing. Any power 

outside this region does not contrib-

ute to the measurement and could 

excite non-linearities. This can be 

a particularly severe problem when 

testing with random noise since it 

theoretically has the same power at all 

frequencies (white noise). To eliminate 

this problem, dynamic signal analyz-

ers often limit the frequency range 

of their built-in noise stimulus to the 

frequency span selected. This could 

be done with an external noise source 

and ilters, but every time the analyzer 
span changed, the noise power and 

ilter would have to be readjusted. This 
is done automatically with a built-in 

noise source so transfer function  

measurements are easier and faster.

Figure 6.6. Nonlinear system

*  This is a consequence of the central limit 
theorem. As an example, the telephone 
companies have found that when many 
conversations are transmitted together, the 
result is like white noise. The same effect 
is found more commonly at a crowded 
cocktail party.

a) Linear
response

b) Noninear
response

Frequency

M
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a
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Section 7: Averaging

To make it as easy as possible to 

develop an understanding of dynamic 

signal analyzers we have almost  

exclusively used examples with deter-

ministic signals, i.e., signals with no 

noise. However, the real world is rarely 

so obliging. The desired signal often 

must be measured in the presence of 

signiicant noise. At other times the 
“signals” we are trying to measure are 

more like noise themselves. Common 

examples that are somewhat noise-

like include speech, music, digital 

data, seismic data and mechanical 

vibrations. Because of these two 

common conditions, we must develop 

techniques both to measure signals in 

the presence of noise and to measure 

the noise itself. 

The standard technique in statistics 

to improve the estimates of a value is 

to average. When we watch a noisy 

reading on a dynamic signal analyzer, 

we can guess the average value. But 

because the dynamic signal analyzer 

contains digital computation capabil-

ity, we can have it compute this aver-

age value for us. Two kinds of averag-

ing are available, RMS (or “power” 

averaging) and linear averaging.

RMS Averaging

When we watch the magnitude of the 

spectrum and attempt to guess the 

average value of the spectrum com-

ponent, we are doing a crude RMS* 

average. We are trying to determine 

the average magnitude of the signal, 

ignoring any phase difference that 

may exist between the spectra. This 

averaging technique is very valuable 

for determining the average power in 

any of the ilters of our dynamic signal 
analyzers. The more averages we take, 

the better our estimate of the power 

level.

In Figure 7.1, we show RMS averaged 

spectra of random noise, digital data 

and human voices. Each of these  

examples is a fairly random process, 

but when averaged we can see the 

basic properties of its spectrum.

If we want to measure a small signal in 

the presence of noise, RMS averaging  

will give us a good estimate of the 

signal plus noise. We can not improve 

the signal-to-noise ratio with RMS 

averaging; we can only make more  

accurate estimates of the total  

signal-plus-noise power. 

a) Random noise b) Digital data

Figure 7.1. RMS averaged spectra

c) Voices. Traces were separated 30 dB for clarity

Upper trace: female speaker

Lower trace: male speaker

*  RMS stands for “root-mean-square” and 
is calculated by squaring all the values, 
adding the squares together, dividing by 
the number of measurements (mean) and 
taking the square root of the result.
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Linear Averaging

However, there is a technique for im-

proving the signal-to-noise ratio of a 

measurement, called linear averaging.  

It can be used if a trigger signal is 

available that is synchronous with 

the periodic part of the spectrum. Of 

course, the need for a synchronizing 

signal is somewhat restrictive, al-

though there are numerous situations 

in which one is available. In network 

analysis problems, the stimulus  

signal itself can often be used as  

a synchronizing signal.

Linear averaging can be implemented 

many ways, but perhaps the easiest 

to understand is where the averag-

ing is done in the time domain. In this 

case, the synchronizing signal is used 

to trigger the start of a time record. 

Therefore, the periodic part of the in-

put will always be exactly the same in 

each time record we take, whereas the 

noise will, of course, vary. If we add 

together a series of these triggered 

time records and divide by the number 

of records we have taken, we will  

compute what we call a linear average.

Since the periodic signal will have 

repeated itself exactly in each time  

record, it will average to its exact 

value. But since the noise is different  

in each time record, it will tend to av-

erage to zero. The more averages we 

take, the closer the noise comes  

to zero and we continue to improve 

the signal-to-noise ratio of our 

measurement. Figure 7.2 shows a 

time record of a square wave buried 

in noise. The resulting time record 

after 128 averages shows a marked 

improvement in the signal to noise 

ratio. Transforming both results to the 

frequency domain shows how many of 

the harmonics can now be accurately 

measured because of the reduced 

noise loor.

a) Single record, no averaging b) Single record, no averaging 

c) 128 linear averages d) 128 linear averages 

Figure 7.2. Linear averaging
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Section 8: Real-Time Bandwidth

Figure 8.1. A new transform every sample Figure 8.2. Time buffer added to block diagram

Figure 8.3. Real-time operation Figure 8.4. Non-real-time operation

Until now we have ignored the fact 

that it will take a inite time to com-

pute the FFT of our time record. In 

fact, if we could compute the trans-

form in less time than our sampling 

period we could continue to ignore 

this computational time. Figure 8.1 

shows that under this condition we 

could get a new frequency spectrum 

with every sample. As we have seen 

from the section on aliasing, this 

could result in far more spectrums 

every second than we could possibly 

comprehend. Worse, because of the 

complexity of the FFT algorithm, it 

would take a very fast and very expen-

sive computer to generate spectrums 

this rapidly.

A reasonable alternative is to add a 

time record buffer to the block dia-

gram of our analyzer (Figure 8.2). In 

Figure 8.3 we can see that this allows 

us to compute the frequency spec-

trum of the previous time record while 

gathering the current time record. If 

we can compute the transform before 

the time record buffer ills, then we 
are said to be operating in real time.

To see what this means, let us look at 

the case where the FFT computation 

takes longer than the time to ill the 
time record. The case is illustrated in 

Figure 8.4. Although the buffer is full, 

we have not inished the last trans-

form, so we will have to stop taking 

data. When the transform is inished, 
we can transfer the time record to the 

FFT and begin to take another time 

record. This means that we missed 

some input data and so we are said to 

be not operating in real time.

Recall that the time record is not con-

stant but deliberately varied to change 

the frequency span of the analyzer. 

For wide frequency spans, the time 

record is shorter. Therefore, as we 

increase the frequency span of the 

analyzer, we eventually reach a span 

where the time record is equal to the 

FFT computation time. This frequency 

span is called the real-time bandwidth. 

For frequency spans at and below the 

real-time bandwidth, the analyzer 

does not miss any data.

Real-Time Bandwidth  
Requirements

How wide a real-time bandwidth is 

needed in a dynamic signal analyzer? 

Let us examine a few typical  

measurements to get a feeling for  

the considerations involved.

Adjusting Devices

If we are measuring the spectrum or 

frequency response of a device that 

we are adjusting, we need to watch 

the spectrum change in what might be 

called psychological real time. A new 

spectrum every few tenths of a second 

is suficiently fast to allow an opera-

tor to watch adjustments in what he 

or she would consider to be real time. 

However, if the response time of the 

device under test is long, the speed 

of the analyzer is immaterial. We will 

have to wait for the device to respond 

to the changes before the spectrum 

will be valid, no matter how many  

spectrums we generate in that time. 

This is what makes adjusting lightly 

damped (high Q) resonances tedious.
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RMS Averaging

A second case of interest in determin-

ing real-time bandwidth requirements 

is measurements that require RMS 

averaging. We might be interested in 

determining the spectrum distribu-

tion of the noise itself or in reducing 

the variation of a signal contaminated 

by noise. There is no requirement in 

averaging that the records must be 

consecutive with no gaps. Therefore, 

a small real-time bandwidth will not 

affect the accuracy of the results.

However, the real time bandwidth will 

affect the speed with which an RMS 

averaged measurement can be made. 

Figure 8.5 shows that for frequency 

spans above the real-time bandwidth, 

the time to complete the average of N 

records is dependent only on the time 

to compute the N transforms. Rather 

than continually reducing the time to 

compute the RMS average as we  

increase our span, we reach a ixed 
time to compute N averages.

Therefore, a small real-time band-

width is only a problem in RMS aver-

aging when large spans are used with 

a large number of averages. Under 

these conditions we must wait longer 

for the answer. Since wider real-time 

bandwidths require faster computa-

tions and therefore a more expensive 

processor, there is a straight-forward 

trade-off of time versus money. In the 

case of RMS averaging, higher real-

time bandwidth gives you somewhat 

faster measurements at increased 

analyzer cost.

Transients

The last case of interest in determin-

ing the needed real-time bandwidth 

is the analysis of transient events. If 

the entire transient its within the time 
record, the FFT computation time is 

of little interest. The analyzer can be 

triggered by the transient and the 

event stored in the time record buffer. 

The time to compute its spectrum is 

not important.

However, if a transient event contains 

high-frequency energy and lasts lon-

ger than the time record necessary to 

measure the high-frequency energy, 

then the processing speed of the  

analyzer is critical. As shown in  

Figure 8.6b, some of the transient will 

not be analyzed if the computation 

time exceeds the time record length.

Figure 8.5. RMS averaging time

Figure 8.6. Transient analysis
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In the case of transients longer than 

the time record, it is also impera-

tive that there is some way to rapidly 

record the spectrum. Otherwise, the 

information will be lost as the analyzer 

updates the display with the spectrum 

of the latest time record. A special 

display which can show more than 

one spectrum (“waterfall” display), 

mass memory, a high-speed link to a 

computer or a high-speed facsimile 

recorder is needed. The output device 

must be able to record a spectrum 

every time record or information will 

be lost. Fortunately, there is an easy 

way to avoid the need for an expensive 

wide real-time bandwidth analyzer 

and an expensive, fast spectrum re-

corder. One-time transient events like 

explosions and pass-by noise are usu-

ally digitally recorded for later analysis 

because of the expense of repeating 

the test. Continuously sampled time 

data can be recorded into a large 

time-capture memory or a high-speed 

through-put disk. This allows you to 

analyze the data later with no  

information loss.

So we see that there is no clear-cut 

answer to what real-time bandwidth 

is necessary in a dynamic signal 

analyzer. Except in analyzing long 

transient events, the added expense of 

a wide real-time bandwidth gives little 

advantage. It is possible to analyze 

long transient events with a narrow 

real-time bandwidth analyzer, but 

it does require the recording of the 

input signal. This method is slow and 

requires some operator care, but you 

can avoid purchasing an expensive 

analyzer and fast spectrum recorder. 

It is a clear case of speed of analysis 

versus dollars of capital equipment.
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Section 9: Overlap Processing

In Section 8 we considered the case 

where the computation of the FFT 

took longer than the time it took to 

collect the time record. In this section 

we will look at a technique, overlap 

processing, which can be used when 

the FFT computation takes less time 

than gathering the time record.

To understand overlap processing, let 

us look at Figure 9.1a. We see a low-

frequency analysis where gathering 

the time record takes much longer 

than the FFT computation time. Our 

FFT processor is sitting idle much of 

the time. If instead of waiting for an 

entirely new time record we over-

lapped the new time record with some 

of the old data, we would get a new 

spectrum as often as we computed 

the FFT. This overlap processing is  

illustrated in Figure 9.1b. To under-

stand the beneits of overlap process-

ing, let us look at the same cases we 

used in the last section.

Adjusting Devices

We saw in the last section that we 

need a new spectrum every few tenths 

of a second when adjusting devices. 

Without overlap processing this limits 

our resolution to a few Hertz. With 

overlap processing our resolution 

is unlimited. But we are not getting 

something for nothing. Because our 

overlapped time record contains old 

data from before the device adjust-

ment, it is not completely correct. It 

does indicate the direction and the 

amount of change, but we must wait 

a full time record after the change for 

the new spectrum to be accurately 

displayed.

Nonetheless, by indicating the direc-

tion and magnitude of the changes 

every few tenths of a second, overlap 

processing does help in the adjust-

ment of devices.

RMS Averaging

Overlap processing can give dramatic 

reductions in the time to compute 

RMS averages with a given variance. 

Recall that window functions reduce 

the effects of leakage by weighting the 

ends of the time record to zero. Over-

lapping eliminates most or all of the 

time that would be wasted taking this 

data. Because some overlapped data 

is used twice, more averages must be 

taken to get a given variance than in 

the non-overlapped case. Figure 9.2 

shows the improvements that can be 

expected by overlapping.

Transients

For transients shorter than the time 

record, overlap processing is useless. 

For transients longer than the time 

record, the real-time bandwidth of 

the analyzer and spectrum recorder is 

usually a limitation. If it is not, overlap 

processing allows more spectra to be 

generated from the transient, usually 

improving resolution of resulting plots.

Figure 9.1. Understanding overlap processing

Figure 9.2. RMS averaging speed improvements with overlap processing
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Summary

In this application note, we have  

developed the basic properties of  

dynamic signal analyzers. We found 

that many properties could be under-

stood by considering what happens 

when we transform a inite, sampled 
time record. The length of this record 

determines how closely our ilters can 
be spaced in the frequency domain 

and the number of samples deter-

mines the number of ilters in the 
frequency domain. We also found that 

unless we iltered the input we could 
have errors due to aliasing, and that 

inite time records could cause a prob-

lem called leakage that we minimized 

by windowing. We then added several 

features to our basic dynamic signal 

analyzer to enhance its capabilities. 

Band-selectable analysis allows us to 

make high-resolution measurements 

even at high frequencies. Averaging 

gives more accurate measurements 

when noise is present and even allows 

us to improve the signal-to-noise ratio 

when we can use linear averaging.  

Finally, we incorporated a noise source 

in our analyzer to act as a stimulus for 

transfer function measurements.
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Glossary

Aliasing — a phenomenon that can 

occur when a signal is not sampled 

at greater than twice the maximum 

frequency component; high- 

frequency signals appear as low-

frequency components; avoided by 

iltering out signals greater than 
1/2 the sample rate

Anti-alias ilter — a low pass ilter 
installed before the sampler and 

analog-to-digital converter to 

limit the input frequency range of a 

signal to prevent aliasing; designed 

to ilter out frequencies greater 
than 1/2 the sample rate (typically 

1/2.56 to allow for ilter rolloff)

Band-selectable analysis — an 

analysis capability that allows you 

to “zoom in” for a high-resolution 

close-up shot of the frequency 

spectrum by concentrating ilters in 
the frequency range of interest.

Digital ilter — a decimating ilter 
that ilters the digital representa-

tion of the input signal (after it 

has been sampled and digitized) 

to the desired frequency span. It 

also reduces the sample rate at its 

output to the rate needed for that 

frequency span.

Fast Fourier Transform (FFT) — an 

algorithm used in computers and 

DSAs to compute discrete frequency  

components from sampled time 

data; invented by Cooley and Tukey

Flat-top window — a windowing  

function that minimizes amplitude 

error for off-center input-signal 

components

Force window — a windowing function 

that eliminates stray signals; used 

for the excitation signal in impact 

test to improve signal-to-noise 

ratio

Hanning window — a windowing 

function used to reduce leakage 

when measuring noise and periodic 

signals like sine waves 

Leakage — the spreading of energy 

throughout the frequency domain; 

energy leaks out of one resolution 

line of an FFT into other lines, 

sometimes masking small signals 

close to a sine wave. This happens 

when the signal is not periodic 

within a time record. Applying an 

appropriate window function will 

minimize the amplitude error due 

to the leakage.

Linear averaging — a technique for 

improving the signal-to-noise ratio 

of a measurement; can be used if 

a trigger signal is available that is 

synchronous with the periodic part 

of the spectrum

Lines — To reduce confusion about 

which domain we are in, samples 

in the frequency domain are called 

lines.

Nyquist Criterion — the minimum  

theoretical sample rate for a 

baseband signal to be reproduced 

in sampled form, equal to twice 

the highest frequency of the input 

signal. In most cases, you will want 

to use a higher sample rate to  

represent the signal accurately.

Periodic random noise (PRN) — a 

kind of pseudo-random noise that 

periodically repeats its sequence; 

the best stimulus for testing linear 

networks.

Pseudo-random noise — a math-

ematically generated random noise 

whose period is matched to time 

record length, thus eliminating 

leakage

Random noise — true noise

Real time — If we can compute the 

transform (FFT) before the time 

record buffer ills, we are said to  
be operating in real time.

Rectangular window — another term 

for uniform window

Response window — an exponential-

weighted window that guarantees 

that the response dies out (goes to 

zero) within the time record; used in 

impact test to avoid leakage error; 

also called “exponential window”

RMS averaging — a technique for 

measuring small signals in the 

presence of noise. RMS averaging  

is useful for processing stationary 

signals. Each data block can be 

overlapped to achieve the maximum  

number of averages. RMS averaging  

produces amplitude information 

only. You lose phase information.

Self-windowing functions — a function  

that does not require a window 

because it occurs completely within 

the time record or its period is 

matched to time-record length  

(it generates no leakage in the FFT)

Time record — a block of N consecu-

tive, equally spaced samples of the 

input; this block is the basic unit 

transformed by an FFT.

Transfer function — a ratio of the 

output over the input, both in the 

Laplace domain; sometimes used 

interchangeably with “frequency 

response function”

Uniform window — a windowing 

function that weights all of the time 

record uniformly; used for transient 

signals

Windowing — a way to reduce leak-

age by forcing an FFT to look at 

data through a narrow window 

where the input is zero at both ends 

of the time record. Many different 

functions can be used to window 

the data, depending on the type of 

measurement you are making.

Zoom — another term for band- 

selectable analysis
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