射頻微波通訊之量測及 儀器介紹

本文介紹各種射頻微波通訊儀器之量測原理及量測方法,內容包括傳統的射頻特性量測及數 位向量信號分析。文中並以 5 GHz U-NII 頻帶之射頻電路及發射/接收射頻模組為量測例 子,詳述測試步驟及量測結果,相信本文對從事射頻微波通訊電路及射頻通訊系統整合的工 程師會有很大的幫助。

莊惠如、林福林、陳宜隆、李亮輝

一、前言

隨著數位通訊工業的發展,射頻微波 (RF/microwave)通訊電路的研發及電路製作跟著快 速成長,因此射頻電路量測也變得相當重要。本文 主要介紹傳統的射頻特性量測及數位向量訊號分 析。射頻特性量測包括:射頻帶通濾波器量測、低 雜訊放大器雜訊指數量測、功率放大器非線性特性 量測、混頻器測量及頻率合成器/電壓控制振盪器 之量測。

數位向量訊號分析部份則以收發機射頻前端模

莊惠如先生為美國密西根州立大學電機博士。現任國立 成功大學電機系教授。

林福林先生為國立成功大學電機博士,現任南台科技大 學電子系助理教授。

陳宜隆先生為國立成功大學電機碩士,現任華邦電子股 份有限公司射頻工程師。

李亮輝先生為國立成功大學電機研究所碩士班學生。

組為例,量測內容包括:位元錯誤率 (bit error rate, BER)、誤差向量振幅值 (error vector magnitude, EVM) 及鄰近波道功率比 (adjacent channel power ratio, ACPR)。EVM (見附錄) 可以檢測出數位調變 訊號的品質,並且找出射頻訊號失真的原因及可能 發生失真的電路位置,包括:功率放大器的增益壓 縮 (gain compression)、本地振盪貫穿 (LO feedthrough)、IQ 增益不平衡 (gain imbalance)、載 波頻率抵補 (carrier frequency offset)、相位雜訊 (phase noise) 干擾及符號間干擾 (intersymbol interference, ISI)等,這是傳統射頻儀器或位元錯誤 率 (bit error rate, BER) 量測儀器所無法測出的。

二、射頻特性量測 (傳統的射頻特性 量測)

本文 以 5 GHz U-NII 頻帶 (unlicensed-national information infrastructure band: 5.150 - 5.350 GHz,

5.725 - 5.825 GHz) 之無線區域網路 (wireless LAN, WLAN) IEEE 802.11a 的發射 / 接收射頻模組為量 測例子, IEEE 802.11a 使用正交分频多工 (orthogonal frequency division multiplexing, OFDM) 調變方式,資料傳輸速率最高可達 54 Mbits/s。 OFDM 是一種資料編碼的技術,利用在不同頻段 同時傳送資料以增加傳輸速率,其目的除了可以善 加利用寶貴的頻譜外,更可以克服頻率選擇性殘衰 頻道 (frequency selective fading channel)。在 5 GHz 的免授權 U-NII 頻帶裡可以分為低、中、高三個頻 帶, 在低與中頻帶 200 MHz 的範圍裡可以容納 8 個 20 MHz 頻寬的通道,高頻帶 100 MHz 的範圍 裡可以容納 4 個 20 MHz 頻寬的通道。每個頻帶內 有 52 個副載波, 48 個副載波負責資料的傳送, 4 個副載波負責同步資訊與傳輸頻率的參考點。每個 副載波的間隔為 0.3125 MHz, 調變方式依據資料 速度的不同而有所分别。

圖 1. IEEE802.11a 無線區域網路 (WLAN) 示意圖與 5.7 GHz U-NII 頻帶收發機之射頻前端模組架構圖。

圖 1 所示為 5 GHz 收發機射頻前端架構圖, 發射或接收 RF 訊號經過雙工器 (duplexer) 及天線 分集之開關 (antenna switch) 進入發射或接收模 組,整個射頻模組採用 FR-4 基板製作。在接收射 頻模組中, RF 訊號基本上經過射頻帶通濾波器 (RF bandpass filter)、低雜訊放大器 (low noise ampliter, LNA)、混頻器 (mixer) 降至中頻 (IF) 進入 IQ 解調器 (IQ demodulator),將訊號分為同相 (inphase) 與正交 (quadrature) 的 I/Q 兩個訊號進入基頻 (baseband) 電路;而在發射射頻模組中,基頻訊號 經由 IQ 調變器 (IQ modulator) 昇頻至 5 GHz RF 訊 號,再由功率放大器 (power amplifier, PA) 輸出發 射;發射或接收之昇降頻 (up-/down-conversion) 皆

圖 2. 網路分析儀量測 5.8 GHz 射頻帶通濾波器實例:返回損耗 (S₁₁)、插入損耗 (S₂₁)。

需頻率合成器 (frequency synthesizer) 提供本地振盪 訊號(LO)。

1. 射頻帶通濾波器量測

射頻帶通濾波器基本上是濾掉接收頻帶外的各 種干擾訊號,以防止其進入接收電路降低接收機選 擇性 (selectivity)。欲知帶通濾波器之頻率響應需量 測其 S 參數 (S parameter), S_{II} 為濾波器之返回損耗 (return loss, RL), S21 為插入損耗 (insertion loss, IL)。設計射頻電路時,我們需要各種儀器作為輔 助,以測量射頻電路的各種特性。在直流電路設計 時,三用電表是最有用的工具;而在低頻的交流電 路時,擁有一部示波器,將對我們的設計工作有非 常大的幫助。同樣地,在設計射頻微波電路時,最 需要的是一部向量網路分析儀 (vector network analyzer)。量測 S 參數是網路分析儀的主要功能, S 參 數是設計射頻小訊號電路時最重要的設計依據,設 計電路時以此決定匹配網路。除了量測 S 參數外, 另外經由網路分析儀計算可以求出駐波比 (SWR)、輸入/輸出阻抗等相關電路特性。熟悉向 量網路分析儀的校正與操作,將有助於射頻電路設 計。使用網路分析儀前必須先完成校正的工作,校 正的程序完成後,便可開始量測。以 5.8 GHz 射頻 帶通濾波 muRata DFCB25G8OLBHAB 作量測實 例,將輸入輸出阻抗匹配到 50 歐姆後接上網路分 析儀,可以量測出待測電路的返回損耗、插入損耗 等特性。圖 2 為網路分析儀量測濾波器的實際接線

m

6.0

65

圖 3. Agilent N8775A 雜訊分析儀操作示意圖:(a) 校正 (calibration), (b) 量測 (measurement)。

圖及返回損耗 (return loss > 10 dB) / 插入損耗 (insertion loss < 2 dB) 量測結果,帶通頻寬約 200 MHz。

2. 低雜訊放大器雜訊指數量測

接收機中由於從天線輸出之接收訊號本身很微 弱,並有背景雜訊干擾,所以它的功能是在放大微 弱的訊號時並儘量減小對雜訊的放大。而放大器在 放大輸入訊號的同時,內部也會產生雜訊,此雜訊 量一般是以雜訊指數來描述 (noise figure, NF),雜 訊指數的定義是在 290 K 的輸入雜訊溫度下,輸入 及輸出端的訊號雜訊比值 (signal-to-noise ratio, SNR)。 雜訊是影響接收系統靈敏度的因素,要提 高靈敏度要從改善系統的雜訊指數 (或雜訊比)著 手,而第一級低雜訊放大器 的影響最大。

整個完整的雜訊指數量測系統需要一個雜訊源 (noise source),它是由累增崩潰二極體(avalanche diode)所組成,此雜訊源在接上 +28 V時,是個等 效熱雜訊源 (*T_h*),此雜訊源在不接上電源時,是個 等效冷雜訊源 (*T_c*)。圖 3 為 Agilent N8775A 雜訊分 析儀操作示意圖,使用前必須先完成校正程序後, 才可開始量測。以 5.7 GHz 低雜訊放大器作為量測 實例,使用電晶體為國內廠商全訊 Transcem

圖 4.5.7 GHz 兩級低雜訊放大器實作照片圖及雜訊 指數量測圖。

TC2281 (GaAs PHEMT),偏壓點的選擇為 V_{ds} 為 3 V、 I_{d} 為 10 mA。匹配電路採對輸入阻抗取共軛的 設計,以微帶線做 single stub 的匹配。直流阻隔電 容與旁路 (bypass) 電容都以考慮寄生效應模型化元 件來模擬,以求得模擬的精確,圖 4 為 5.7 GHz 兩 級低雜訊放大器實作照片圖與所測得的雜訊指數, 在 5.725 - 5.825 GHz 頻率範圍內, 雜訊指數都低 於 1.6 dB。

3. 功率放大器非線性特性量測

在無線通訊運用上,功率放大器電路設計的基 本考量為線性度及效率的問題。功率放大器的線性 度影響到訊號的輸出品質,而效率則決定了電池使 用及待機時間的長短。一般而言,這兩項參數是互 相牴觸的,所以如何在線性度與效率之間做取捨, 是設計製作功率放大器的重要指標。在實際設計 上,必須考慮到系統的規畫方式;舉例來說,目前 GSM 數位無線通訊系統,其採用 GMSK 的調變方 式,可容許功率放大器有較大的失真以追求功率效 益,但 GMSK 在頻譜效益 (spectral efficiency)就比 較差;北美的 IS-54 系統採用 DQPSK 的調變方 式,對功率放大器的線性度要求就比較高,相對地 在頻譜效益的表現就比較好。 使用 S 參數設計射頻電路時,是假設其動作為 線性的,但實際上所有的主動電路元件都是非線性 的,尤其是功率高時,此現象更為明顯。若以三階 函數來模擬非線性電路輸出

$$V_0 = k_0 + k_1 v_i + k_2 v_i^2 + k_3 v_i^3$$

如果輸入訊號只有一個頻率 f, $v_i(t) = A\cos(2\pi ft)$, 代入上式後,可以得到輸出訊號 $V_0(t)$ 是由 很多頻率 f, 2f, 3f, 4f, 所構成,這些非輸入訊號的 頻率,就是諧波 (harmonics)。如果輸入是二個頻率 很相近的訊號,如實際通訊時兩個相鄰的頻道 (channel)的訊號

$$v_i(t) = A\cos\left(2\pi f_1 t\right) + A\cos\left(2\pi f_2 t\right)$$

$$V_{0} = k_{0} + k_{1}v_{i} + k_{2}v_{i}^{2} + k_{3}v_{i}^{3} + \cdots$$

$$= k_{0} + k_{1}A(\cos\omega_{1}t + \cos\omega_{2}t) + k_{2}A^{2}(\cos\omega_{1}t + \cos\omega_{2}t)^{2} + k_{3}A^{3}(\cos\omega_{1}t + \cos\omega_{2}t)^{3} + \cdots$$

$$= k_{0} + k_{2}A^{2}$$

$$+ k_{2}A^{2}\cos(\omega_{1} - \omega_{2})t + k_{2}A^{2}\cos(\omega_{1} + \omega_{2})t \qquad \dots 2nd \text{ order IMD } (\omega_{1} \pm \omega_{2})$$

$$+ \left(k_{1}A + \frac{9}{4}k_{3}A^{3}\right)\cos\omega_{1}t + \left(k_{1}A + \frac{9}{4}k_{3}A^{3}\right)\cos\omega_{2}t \qquad \dots \text{ foundamental component } (\omega_{1}, \omega_{2})$$

$$+ \frac{1}{2}k_{2}A^{2}\cos 2\omega_{1}t + \frac{1}{2}k_{2}A^{2}\cos 2\omega_{2}t \qquad \dots 2nd \text{ harmonics } (2\omega_{1}, 2\omega_{2})$$

$$+ \frac{1}{4}k_{3}A^{3}\cos 3\omega_{1}t + \frac{1}{4}k_{3}A^{3}\cos 3\omega_{2}t \qquad \dots 3rd \text{ harmonics } (3\omega_{1}, 3\omega_{2})$$

$$+ \frac{3}{4}k_{3}A^{3}\cos(2\omega_{1} - \omega_{2})t + \frac{3}{4}k_{3}A^{3}\cos(2\omega_{2} - \omega_{1})t \qquad \dots 3rd \text{ order IMD } (2\omega_{1} - \omega_{2}) \& (2\omega_{2} - \omega_{1})$$

$$+ \dots \dots$$

可以發現輸出訊號的頻譜由 f_1 、 f_2 、 $2f_1$ 、 $2f_2$ 、 $f_1 \pm f_2$ 、 $2f_1 \pm f_2$ 、 $f_1 \pm 2f_2$ 等頻率所組成, $2f_1$ 和 $2f_2$ 同前 面為二階的諧波, $f_1 \pm f_2$ 則是二階的交互調變失真 (intermodulation dstortion, IMD), 而 ($2f_1 \pm f_2$)和 ($f_1 \pm 2f_2$)是三階的交互調變失真。因為二階或更高偶 數階的交互調變失真,其頻率與主頻率相差很大, 可以用濾波器濾掉,所以較不考慮它的影響。但是 三階或奇數高階交互調變失真則和主頻率幾乎相 同,只相差 $f_1 - f_2$ 而已,不可能用濾波器濾掉,影 響就很大了。圖 5 為交互調變失真頻譜圖及三階 IMD 示意圖。

為了表示交互調變失真的大小,所以定義出截

圖 5. 電路非線性交互調變失真頻譜及三階 IMD 示意圖。

斷點 (intercept point, IP),因為以三次交互調變失真 的影響最大,因此通常只考慮三階截斷點 (3rdorder intercept point, IP3)的大小。IP3 的定義為假 設主訊號和三次交互調變失真的增益圖的直線部份 延伸相交在一點,即為三階截斷點。因為有非線性 特性的關係,放大器的增益在小訊號時為線性,但 功率增大時增益就會逐漸減小,為了表示放大器的 工作範圍,因此定義出1dB增益壓縮點(1-dB compression point),也就是只當輸入功率增大到一 強度,其非線性增益剛好比線性增益減少1dB。 圖7為 IP3 及1dB 增益壓縮點之定義圖。

1 dB 增益壓縮點 (P_{1dB}) 量測步驟如下:

- (1)將訊號源接上待測電路輸入端,輸出端則接到 頻譜分析儀。
- (2) 記錄下輸入、輸出功率,並求出電路增益。
- (3)將訊號源其輸出功率逐步增大,並重複步驟2,直到待測電路或儀器無法承受為止。需注意功率大小,以免將儀器燒毀!
- (4) 依據所得到的數據,分析出電路的線性增益。然後求出當輸入功率加大到何值時其增益剛好

圖 6.1 dB 增益壓縮點 (P_{1dB}) 及三階截斷點 (IP3) 定 義圖。

減少1 dB, 即為 P1dB。

IP3 量測步驟如下:(參見圖 7)

(1) 將兩組 RF 訊號產生器接上功率混合器 (power combiner) 輸入兩端,功率混合器輸出端接至射

圖 7. 放大器雙音測試 (two-tone test) 之 IP3 測量 圖。

頻放大器之輸入端,放大器電路輸出端則接到 頻譜分析儀。新型數位 RF 訊號產生器 (如 Agilent ESG)可內部產生兩組頻率不同之訊號, 故不需要混合器。

(2) 將兩組訊號源其輸出功率設為一樣,頻率分別

圖 8.

5.7 GHz 三級功率放大器實作照片及非線性特性量 測圖。

為 f_1 與 f_2 ($f_1 \neq f_2$),但兩者非常接近。

- (3) 觀察頻譜上是否有 $mf_1 + nf_2, mf_1 nf_2$ 訊號出現。
- (4) 稍微調整兩組訊號源的輸出功率,使頻譜上 f₁
 和 f₂ 訊號的強度相同,並以下列公式 計算出
 P_{IP3} 的大小。

$$P_{\rm IP3} = \frac{1}{2} \left[3 \times P_{f_1} - P_{(2f_1 - f_2)} \right]$$

在此以 5.7 GHz 三級功率放大器作為量測實例, 功率放大器電路採三級放大,第一、第二級的電晶 體採用全訊 Transcom 所生產的 TC2281,功率輸出 級採用 TC2591。圖 8 為 5.7 GHz 三級功率放大器實 作照片與非線性特性量測圖,量測得到 1 dB 增益 壓縮點為 28.5 dBm,三階截斷點為 OIP3 = 36.3 dBm。

4. 混頻器測量

在射頻通訊系統中,混頻器是提供頻率轉換的 電路。因為混頻器是屬於三埠的架構,所以有較多 的電路特性,對於雜訊指數、線性度、轉換損耗 (conversion loss)及隔離度 (isolation)等混頻器的特 性皆有不同的規範,通常要使混頻器眾多的特性皆 良好是十分困難,必須依系統而有所取捨。依照所 使用的混頻元件是二極體或是電晶體而有被動式或 主動式的分別。架構上混頻器又有單端型 (singleended)、單平衡型 (singly balanced)及雙平衡型 (doubly balanced)等不同組態。

(1) 頻譜分析儀量測轉換增益 / 損耗

如圖 9(a) 所示,LO 訊號和 RF 訊號皆由訊號 產生器產生,中頻訊號由頻譜分析儀接收,轉換增 益或轉換損耗為已知的射頻訊號強度和量測到的中 頻訊號強度差。

(2) 使用頻譜分析儀量測隔離度

如圖 9(b) 所示, LO 訊號由訊號產生器產生, 混頻器的 IF 端接 50 Ω 負載, 混頻器的 RF 端接頻 譜分析儀; LO 端和 RF 端的隔離度為已知的 LO 訊號強度和在 RF 端量測到的本地訊號強度差, LO 端和 IF 端的隔離度亦可由此方式量測。

(3) 使用網路分析儀量測返回損耗

如圖 9(c) 所示,網路分析儀首先針對要量測 的頻帶作 S₁₁ 單端校正,若要量測 RF 端的輸入返 回損耗,則將網路分析儀接至混頻器的 RF 端,而 IF 端接 50 Ω 的負載,最重要的是要將 LO 訊號輸

圖 9. 混頻器特性量測接線圖。(a) 頻譜分析儀測量 混頻器轉換增益 / 損耗接線圖,(b) 頻譜分析 儀測量混頻器隔離度接線圖,(c) 網路分析儀 量測混頻器返回損耗接線圖。

入,使混頻器正常工作,如此量測到的輸入返回損 耗才是正確的;量測 IF 端輸入返回損耗的方法和 RF 端相同。

(4) 使用頻譜分析儀量測 IP3

如圖 10 所示, 欲量測混頻器之 IP3, 除了 RF

訊號輸入端需要兩個訊號源外,還需要一個本地振 盪器,因此還必須要有三台訊號產生器(可用網路 分析儀 CW 輸出取代本地振盪器)。

(5) 混頻器 SSB 雜訊指數量測

如圖 11 所示,量測混頻器 SSB 雜訊指數需在 待測物前面接一帶通濾波器,以濾除假像頻帶的雜 訊。

在此以 5.7 GHz 單端電阻性混頻器來作量測實 例,混頻器的設計採用 NE32684(HJET), RF 為 5.725 - 5.825 GHz, LO 為 5.445 - 5.545 GHz, IF 為 280 MHz。圖 12 為 5.7 GHz 單端型電阻性混頻 器與量測結果。圖 (a) 為射頻輸入端返回損耗,於 5.725 - 5.825 GHz 頻帶中,至少有 17 dB 的返回損 耗;圖(b)為本地振盪訊號輸入端返回損耗,於 5.445 - 5.545 GHz 頻帶中,至少有 15 dB 返回損 耗;圖(c)為280 MHz 中頻輸出端之返回損耗,至 少有 10 dB 返回損耗;圖(d)為 SSB 雜訊指數,頻 帶內雜訊指數皆小於 12.5 dB;圖(e)為LO-IF 隔離 度;圖(f)為LO-RF隔離度;圖(g)為轉換損耗與 頻率之關係,在頻帶內損耗約9.5 dB;圖(h)為 LO 轉換損耗與功率之關係,理想操作功率在 LO 為 3 dBm; 圖 (i) 為 1 dB 增益壓縮點量測結果, P_{14B} 約為 -5.4 dBm; 圖(i) 為三階截斷點量測結 果, OIP3 約為 6.4 dBm。

5. 頻率合成器 (FS) / 電壓控制振盪器 (VCO) 之量測

電壓控制振盪器一般配合鎖相迴路 (phaselocked loop, PLL) 構成頻率合成器 (frequency synthesizer, FS)。一般應用在無線通訊系統中之本 地振盪 (LO),其對通訊系統之輸出訊號或接收訊 號 (經過本地振盪之頻率轉換)的品質,有著決定 性的影響。本 5 GHz 射頻模組使用 2.4 GHz 頻率合 成器配合倍頻器 (frequency doubler) 來提供 5 GHz 本地振盪訊號。

(1) 鎖相迴路的基本原理

如圖 13 為 2.4 GHz 頻率合成器鎖相迴路 (phase-locked loop, PLL)的基本方塊圖。為了獲得 特定的頻率 f_0 ,先設計一頻率變化範圍涵蓋 f_0 的電

圖 10. 混頻器雙音測試 (tow-tone test) 之 IP3 測量圖。

圖 11. 混頻器 SSB 雜訊指數量測電路示意圖。

壓控制振盪器 (VCO)。將振盪器的輸出訊號經過一 除頻器 (divider),再迴授至相位偵測器 (phase detector)。除頻器輸出訊號 f₀ 與參考訊號源 f,經過 比較之後,會產生錯誤控制訊號 ϕ_e ,來改變電壓控 制振盪器的輸出頻率。一旦迴路鎖定,相位偵測器 的兩個輸入頻率會變成一致,最後頻率鎖定在 f₀。

(2) VCO/FS 的相位雜訊與輸出功率量測 相位雜訊簡單的定義如下式所示:

$$L(f_m) = \frac{N(f_m @1 \text{Hz BW})}{C}$$

圖 12. 5.7 GHz 單端型電阻性混頻器實作照片圖及量測結果。(a) RF 返回損耗,(b) LO 返回損耗,(c) IF 返回損耗圖,(d) 雜訊指數,(e) LO-IF 隔離度,(f) LO-RF 隔離度,(g) 轉換損耗與頻率,(h) 轉換損耗與 LO 功率,(i) 1 dB 增益壓縮點,(j) 雙音測試及三階截斷點。(接下頁)

圖 13.

2.4 GHz 頻率合成器鎖相回路基本方 塊圖及佈局圖。

圖 14. 本質振盪器訊號、相位雜訊輸出頻譜、與相 位雜訊所造成之干擾訊號對接收訊號影響示 意圖。

其中 C 為振盪訊號中心頻率 f_0 的功率, N 為距離 f_0 頻率 f_m 處頻寬 1 Hz 的雜訊功率, $L(f_m)$ 即為相位 雜訊,此定義如圖 14 所示,圖 14 同時有相位雜訊 所造成之干擾訊號對接收訊號影響的示意圖。單旁 帶 (SSB) 相位雜訊可以使用頻譜直接測量法觀察, 將頻譜分析儀之解析頻寬 (RBW) 設定為 1 kHz, 擴展頻率 (span) 設為 100 kHz,量測距中心頻率 10 kHz 的訊號能量與中心頻率的能量差,再根據 RBW 及實際量測接線的損耗做修正,得出距中心 頻率 10 kHz 的雜訊。若設定解析頻寬為 1 kHz,須 將量測結果減掉 10 log(1k) = 30 dB,若使用之量測 接線有 1 dB 的損耗,故必須把所量到之功率加 1 dB 才是真正的輸出功率。

(3) VCO 的輸出功率 / 控制電壓對頻率量測 改變 VCO 內可變電容二極體的控制電壓,

圖 15. (a) 2.12 - 2.203 GHz VCO 之測量結果:相位 雜 @ 10 kHz, (b) 諧波功率分佈。

VCO 的振盪頻率會隨之變化,可利用頻譜分析儀 量測與之對應的 VCO 振盪訊號的中心頻率與功 率。

(4) VCO 的 Pushing Figure 量測

當 VCO 的直流偏壓變化時, VCO 的輸出頻率 也會變化,此變化量稱為 pushing figure。可調整電 源電壓變化 0.2 V,從頻譜分析儀中讀出輸出頻率 的變化量。

(5) VCO 的 Pulling Figure 量測

當 VCO 的輸出負載變化時, VCO 的輸出頻率 也會變化, 此變化量稱為 pulling figure。可用 stub

圖 16.5.7 GHz 接收模組架構圖及實作照片圖。

tuner 改變 VCO 輸出負載,利用頻譜分析儀得知輸 出頻率的變化。圖 15 為電壓控制振盪器特性量測 結果,實際訊號輸出功率約4-6dBm、輸出頻率 在 2.12 - 2.203 GHz 間, 而相位雜訊為 - 87 dBc/Hz @ 10 kHz; pulling figure 和 pushing figure, pulling figure 即是對於 50 Ω 和 75 Ω 兩種不同的負載 (VSWR = 1.5), 其輸出頻率的飄移量, pulling figure 約 1.4 MHz @ SWR = 1.5; 而 pushing figure 為直流偏壓飄移正負 0.2 V 時輸出頻率的飄移量, pushing figure 約 400 kHz @ 0.2 V。由圖 13 所示, 將 2.12 - 2.203 GHz 電壓控制振盪器配合鎖相迴路 構成 2.176 GHz 頻率合成器 ,把所需的本地振盪 訊號定於 2176 MHz, 則頻率的鎖定是由一個 2 MHz 石英振盪器,配合 Motorola 的除頻器,分別 是除以 64 (MC12079) 與除以 17 (MC12026),得到 所要的頻率:

 $2176 \text{ MHz} = 2 \text{ MHz} \times 64 \times 17$

三、收發機射頻前端模組:整合電路 射頻特性及數位調變之量測

1. 接收模組整合電路量測

5.7 GHz 接收機射頻前端架構及射頻模組實作 照片如圖 16 所示,接收機經由一次降頻降至中頻 280 MHz,圖 17 為射頻模組特性量測結果。圖 (a) 為接收機在 5.75 GHz 之輸入功率與輸出功率,圖 (b) 為輸入功率對增益壓縮圖,在輸入功率為 -34 dBm 時達到 1 dB 增益壓縮點,此時的輸出功率為 -4 dBm;圖(c)為理想增益鏈路計算圖,圖(d)為 增益與頻率關係圖,在 5.75 GHz 時約有 30 dB 的 增益;圖(e)為理想雜訊指數鏈路計算圖,計算出 來理想情況下整體雜訊指數約為 4.4 dB,圖(f)為 接收模組雜訊指數量測圖,在 5.75 GHz 時雜訊指 數小於 4.7 dB,與計算整體接收模組的雜訊指數相 距不遠。表 1 列出 5.7 GHz 接收射頻模組整體特 性總表。

2. 接收模組 OFDM 接收靈敏度量測

靈敏度是系統接收微小訊號能力的指標,也就 是滿足系統通訊品質要求的最小訊號功率,而雜訊 是影響靈敏度的因素。當數位系統可接受的錯誤率 被決定,解調所需滿足的訊雜比(*E*_b/*N*_o)也就可以 推算出來,將雜訊的效應考慮在內,綜合以上資訊 可得出接收系統所需的最小訊號功率。對一個數位 系統而言,載波與雜訊的功率比(*C*/*N*)可表示成

- $\frac{C}{N} = \frac{E_b R_b}{N_o B}$
- C:載波功率 N:雜訊功率 E:每單位位元的能量
- N.:雜訊功率密度
- *R*_b:傳輸數據速率(data rate)
- B: 頻寬 (Hz)

圖 17. 5.7 GH 接收機射頻前端模組特性量測。(a) 輸入功率與輸出功率 @ *f* = 5.75 GHz, (b) 輸入功率與增益 壓縮 @ *f* = 5.75 GHz, (c) 增益理想鏈路計算圖, (d) 增益對頻率, (e) 雜訊指數理想鏈路計算圖, (f) 雜 訊指數對頻率。

由雜訊指數的定義可將輸入訊號雜訊比 (S_i/N_i) 代換 $(N_r: 接收系統之雜訊指數)$

而輸入雜訊 N_i 可表示成

 $N_i = kBT$

k:波茲曼常數(*k* = 1.380×10⁻²³ *J*/°K) *T*:絕對溫度(°K)

$$\frac{S_i}{N_i} = N_F \frac{C}{N} = N_F \frac{E_b R_b}{N_o B}$$

5.7 GHz Receiver RF Front-end			
RF Frequency (Input)	5.725 - 5.825 GHz		
IF Frequency (Output)	280 MHz		
DC Voltage/ Current	+3 V/ -3 V / 33 mA		
Gain	30 dB		
NF	4.7 dB		
Input/output P_{1dB}	-34 dBm/-4 dBm		

表 1.5.7 GHz 射頻前端接收模組特性總表。

綜合以上可求得系統的靈敏度

$$S_i = kTN_F R_b \frac{E_b}{N_a}$$

取對數可得 (在室溫 T = 290 K)

$$S_{i}(dBm) = -174 + N_{F}(dB) + 10\log[R_{b}(bps)] + \frac{E_{b}}{N_{o}}(dB)$$
$$= -144 + N_{F}(dB) + 10\log[R_{b}(Mbps)] + \frac{E_{b}}{N_{o}}(dB)$$

IEEE 802.11a WLAN 所使用 之 OFDM 調變方式的頻道頻寬約 20 MHz,因目前尚無此規格之

OFDM 訊號產生器, 吾人使用數位音訊廣播 (digital audio broadcasting, DAB) 系統之 OFDM 訊 號來模擬, DAB channel 頻寬約 1.536 MHz, 以 Philips DAB Test Encorder PDE 452 及 DAB Test Receiver DAB 752 配合 5.7 GHz 收發模組來模擬 OFDM 之數位傳輸量測,圖 18 為量測接收模組靈 敏度接線架構圖。由 DAB Test Encorder 所發射出 來的 OFDM 訊號需升至 5.75 GHz 的頻段以傳送入 接收模組,而接收模組需經一降頻器降至 192 MHz,再傳送給 DAB Test Receiver 做 OFDM 解 調,經由持續衰減 DAB 發射訊號同時觀察 Test Receiver 解出之 BER 來推算 5.7 GHz 接收模組接收 靈敏度。

當 DAB 發射訊號強度為 -93 dBm 時,DAB 接 收機 (經 5.7 GHz 接收射頻模組) 解得之位元錯誤率 (bit error rate, BER) 值約 10^4 ,因 $\pi/4$ -DQPSK 數位 調變訊號解調所需之 $E_b/N_o = 8.5$ dB (@BER = 10^4), 而 5.7 GHz 接收模組整體雜訊指數約 4.7 dB,故由 靈敏度 (sensitivity) 的定義可得理論值 (DAB 頻道 頻寬約 1.536 MHz,所以 $R_b = 1.536 \times 2$ Mbps):

Sensitivity $S_i = -114 + N_F + 10 \log [R_b(Mbps)] + (E_b/N_o)$ = $-114 + 4.7 + 10 \log (1.536 \times 2) + 8.5$ = -95.63 dBm

圖 18.5.7 GH 射頻接收模組之 OFDM 訊號靈敏度量測架構圖。

表 2.5.7 GHz 射頻接收模組靈敏度推算與量測。

BER	Sensitivity (measurement)	Sensitivity (ideal)
10 ⁻⁴	-93 dBm	–95.63 dBm

以上數據與量測所得的靈敏度分別相差 2.6 dB,如表 2 所示,一般推測誤差來自 cable loss、 訊號強度的準確度,及外在雜訊干擾,通稱為 implementation loss。

3. 發射模組整合電路量測

5.7 GHz 發射模組的架構圖及實作照片圖如圖 19 所示,由於中頻放大器可以推得的訊號經由濾 波器與混頻器之後已經降至約 –17 dBm 的大小, 三級功率放大器的增益並無法把訊號推到 1 dB 增 益壓縮點,所以在三級功率放大器之前又加了一級

圖 19.5.7 GHz 發射模組架構圖及實作照片圖。

圖 20. 5.7 GHz 發射機射頻前端模組特性量測。(a) 輸入功率與輸出功率 @ = 5.75 GHz, (b) 輸入功率與增益 壓縮 @ = 5.75 GHz, (c) 增益與頻率, (d) 雙音測試 / 三階截斷點量測。

圖 21. 5.7 GHz 發射模組 ACPR 量測。(a) ACPR = -31.4dBc @ main channel power = 16 dBm, (b) ACPR = -22.1 dBc @ main channel power = 19.3 dBm

驅動放大級。280 MHz 的 IF 訊號經由混頻器升至 5.725 - 5.825 GHz 的 RF 訊號後,再由功率放大器 放大輸出。圖 20 為發射模組之特性量測圖。輸入 功率為 –25 dBm 時達到 1 dB 增益壓縮點,此時的 輸出功率為 25.3 dBm,整體增益約為 50 dB,OIP3 約為 35 dBm。表 3 為 5.75 GHz 發射模組特性總表 (ACPR 量測結果參見圖 21)。

4. 發射模組鄰近頻道功率比 (ACPR) 量測

在數位無線通訊系統中,數位調變訊號所佔的 頻寬比傳統的 FM 訊號大,為降低邊波帶(sidelobe) 對鄰近頻道所造成的干擾,資料在調變之前都會先 經過數位處理(如 QPSK 訊號會用 raised-cosine filter,而 GMSK 訊號會有一個 Gaussian filter 做前 處理),以降低邊波帶對鄰近頻道的影響;但是功 率放大器的非線性失真除了造成訊號本身的失真, 突長的邊波帶還會造成鄰頻道干擾(adjacent channel interference, ACI),尤其當系統是採用 PSK 系列(如 QPSK、π/4 DQPSK 等)的調變方式,這種 由於功率放大器的非線性失真所引起的干擾尤其嚴 重,通常一個成熟的通訊系統都會對發射訊號所造 成的鄰頻道功率加以規範,而 ACPR 即定義為主 頻道頻寬內訊號功率與鄰近波道功率比(見附錄)。

由 Philips DAB test encorder PDE 452 發射 OFDM 訊號,經由發射模組送至頻譜分析儀觀察 鄰近頻道功率增長情形,頻帶寬度設為 1.6 MHz, 如圖 21 所示,量測得到主頻帶輸出功率為 16 dBm 時,ACPR 為 -31.4 dBc;主頻帶輸出功率為 19.3 dBm 時,ACPR 為 -22.1 dBc。

發射 / 接收模組之傳輸整合誤差向量振幅 值 (EVM) 量測

圖 22 為 5.7 GHz 發射及接收模組之數位調變 收發量測架構圖,由向量訊號產生器 (如 Agilent E4433B)產生 280 MHz 的 32QAM 調變訊號,每秒 符號速率為 1.2 Msps,配合 SRRC (square root raised cosine filter: $\alpha = 0.25$)來模擬 1.536 MHz 頻寬 的 DAB OFDM 訊號,訊號經過發射模組後接上一

表 3.5.75 GHz 發射模組特性總表。

5.75 GHz Transmitter RF Front-end		
IF Frequency (Input)	280 MHz	
RF Frequency (Output)	5.725 - 5.825 GHz	
DC Voltage / Current	+8V/-3V/540 mA	
Gain	50 dB	
OIP3	34.7 dB	
$P_{1\mathrm{dB}}$	25.3 dBm	
ACPR*	-31.4 dBc @ main channel power = 16 dBm -22.1 dBc @ main channel power = 19.3 dBm	

* With DAB OFDM signal : BW = 1.536 MHz

衰減器,以控制傳輸至接收模組的功率,再經過接 收模組後送到向量訊號分析儀 (vector signal analyzer) 做數位解調變,並量測向量失真度 EVM 值。

未接上發射 / 接收模組電路前,所測得的數位 調變向量失真度 EVM 為 1%,訊號經過模組電路 後測得的 EVM 值為 1.6% (接收模組的輸入功率約 在 –50 dBm),如圖 23(a)所示,惡化了 1.23%;另 外,將每秒符號速率提升至 5 Msps,在未接上模 組電路前所測得的 EVM 為 3%,訊號經過模組電 路後測得的 EVM 值 5.4%,如圖 23(b)所示,惡化 了 4.5%。

6. 無線傳輸收發量測

無線傳輸收發量測的架構及照片如圖 24 所

示,將發射模組與接收模組各接上一 2.4 GHz 偶極 子天線 (input SWR < 2 @ 5.7 GHz) 作無線傳輸收發 量測,吾人使用 DAB test encorder 及 DAB test receiver,配合 5.7 GHz 發射與接收模組來模擬 OFDM 訊號傳輸量測,這裡要注意 HP3648C 訊號 產生器頻率只到 3 GHz,故需要一倍頻器 (frequency doubler) 以提升 LO 頻率到 5 - 6 GHz 範 圍,而倍頻器之損耗約為 13 dB (@ input power = 14 dBm at 2.7 GHz)。由 DAB test encorder 產生 1 kHz 單音訊號,在大樓內走廊相距 15 公尺之無線 收發測試,由 DAB test receiver 解調得到 BER = 2 × 10⁻⁴。表4為 5.7 GHz 發射與接收模組之數位調 變傳輸量測特性表。

四、結論

本文介紹了傳統的射頻特性量測及數位向量信 號分析。射頻特性量測包括:帶通濾波器、低雜訊 放大器雜訊指數、功率放大器非線性特性、混頻器 及電壓控制振盪器等。數位向量信號分析部份則以 收發機射頻前端模組為例,量測內容包括;位元錯 誤率 (BER)、向量失真度 (EVM)及鄰近頻道功率 比 (ACPR)。文中並以實際的 5 GHz U-NII 頻帶之 射頻電路及發射 / 接收射頻模組為量測例子,詳述 測試步驟及量測結果,相信本文對從事射頻微波通 訊電路及射頻系統整合的工程師會有很大的幫助。

圖 22.5.7 GHz 發射及接收模組之數位調變收發量測架構圖。

未接上模組: EVM=3%

經過收發模組: EVM=5.4%

(b) symbol rate=5 Msps

圖 23.5.7 GHz 發射 / 接收模組之 32QAM 數位調變訊號收發 EVM 量測。(接收模組輸入功率為 -50 dBm)

Wired Transmission Test (@ receiving power = -50 dBm) (through cable connection with adjustable attenuator to control transmission power)				
Modulation signal	No RF modules (only ESG to VSA)	With Tx & Rx modules		
32QAM (symbol rate = 1.2 Msps)	EVM = 1%	EVM = 1.6%		
32QAM (symbol rate = 5 Msps)	EVM = 3%	4EVM = 5.4%		
Wireless Transmission Test (@ transmitting power = 23 dBm) (through 2.4 GHz dipole antennas: input SWR < 2 @5.7 GHz)				
Modulation signal	15 m distance (indoor)			
DAB OFDM (BW = 1.6 MHz)	$BER = 2.1 \times 10^{-4}$			

表4.

5.7 GHz 發射與接收模組之數 位調變傳輸量測特性表。

圖 24. 5.7 GHz 發射及接收模組之 OFDM 訊號無線傳輸量測架構及照片圖。(倍頻器之損耗約為 13 dB @ input power = 14 dBm at 2.7 GHz)

附錄

數位解調變的性能好壞由誤差向量振幅值 (error vector magnitude, EVM) 來量化作判斷,其定 義如下(圖 A-1):

向量訊號分析儀 (vector signal analyzer) 可針對 不同的數位調變訊號量測量測其 EVM 值。 $EVM = \left(\frac{\text{average error magnitude}}{\text{peak symbol magnitude}}\right) \times 100\%$

鄰近頻道功率比 (adjacent channel power ratio, ACPR) 定義為主頻道頻寬內訊號功率與鄰近波道 功率比,如圖 A-2。向量訊號分析儀或新型頻譜分 析儀 (如 Agilent ESA 系列 E440 × B) 可測量不同數 位調變之 ACPR 值。

圖 A-1. EVM 之定義。

參考文獻

- 1. IEEE Standard 802.11a: High-speed Physical Layer in the 5 GHz Band (1999).
- 2. Richard van Nee, IEEE VTC, 258 (1999).
- Tri T. Ha Solid-state Microwave Amplifier Design, John Wiley & Sons (1981).
- 4. G. Gonzalez, Microwave Transistor Amplifiers Analysis and

圖 A-2. ACPR 之定義。

Design, Prentice (1984).

- 5. D. M. Pozar, *Microwave and RF Design of Wireless Systems*, John Wiley & Sons (2001).
- U. L. Rohde and D. P. Newkirk, *RF/Microwave Circuit Design* for Wireless Applications, John Wiley & Sons (2000).
- 7. Agilent Technologies Application Note 57-2 (2000).
- 8. S.-Y. Liu and H.-R. Chuang, *Applied Microwave and Wireless*, 32, June (1998).
- 陳宜隆, 5.7 GHz UNII 頻帶無線通訊之 MMIC 功率放大器 及射頻收發模組之設計製作,國立成功大學電機工程學系碩 士論文 (2001).